About the Project

.世界杯体彩串买『网址:mxsty.cc』.陪看世界杯女孩.m6q3s2-2022年11月29日7时0分9秒.字符>wcamcs

AdvancedHelp

(0.002 seconds)

31—40 of 221 matching pages

31: Bibliography S
  • R. Shail (1980) On integral representations for Lamé and other special functions. SIAM J. Math. Anal. 11 (4), pp. 702–723.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • A. Sidi (2010) A simple approach to asymptotic expansions for Fourier integrals of singular functions. Appl. Math. Comput. 216 (11), pp. 3378–3385.
  • R. Sips (1965) Représentation asymptotique de la solution générale de l’équation de Mathieu-Hill. Acad. Roy. Belg. Bull. Cl. Sci. (5) 51 (11), pp. 1415–1446.
  • K. Soni (1980) Exact error terms in the asymptotic expansion of a class of integral transforms. I. Oscillatory kernels. SIAM J. Math. Anal. 11 (5), pp. 828–841.
  • 32: Bibliography C
  • L. Carlitz (1960) Note on Nörlund’s polynomial B n ( z ) . Proc. Amer. Math. Soc. 11 (3), pp. 452–455.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • J. A. Cochran (1963) Further formulas for calculating approximate values of the zeros of certain combinations of Bessel functions. IEEE Trans. Microwave Theory Tech. 11 (6), pp. 546–547.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • F. Cooper, A. Khare, and A. Saxena (2006) Exact elliptic compactons in generalized Korteweg-de Vries equations. Complexity 11 (6), pp. 30–34.
  • 33: 26.6 Other Lattice Path Numbers
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    1 1 3 5 7 9 11 13 15 17 19 21
    5 1 11 61 231 681 1683 3653 7183 13073 22363 36365
    Table 26.6.2: Motzkin numbers M ( n ) .
    n M ( n ) n M ( n ) n M ( n ) n M ( n ) n M ( n )
    3 4 7 127 11 5798 15 3 10572 19 181 99284
    Table 26.6.4: Schröder numbers r ( n ) .
    n r ( n ) n r ( n ) n r ( n ) n r ( n ) n r ( n )
    1 2 5 394 9 2 06098 13 1420 78746 17 11 18180 26018
    3 22 7 8558 11 52 93446 15 39376 03038 19 323 67243 17174
    34: Bibliography M
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • T. Morita (1978) Calculation of the complete elliptic integrals with complex modulus. Numer. Math. 29 (2), pp. 233–236.
  • L. Moser and M. Wyman (1958b) Stirling numbers of the second kind. Duke Math. J. 25 (1), pp. 29–43.
  • D. Müller, B. G. Kelly, and J. J. O’Brien (1994) Spheroidal eigenfunctions of the tidal equation. Phys. Rev. Lett. 73 (11), pp. 1557–1560.
  • L. A. Muraveĭ (1976) Zeros of the function A i ( z ) σ A i ( z ) . Differential Equations 11, pp. 797–811.
  • 35: 8.26 Tables
  • Pearson (1968) tabulates I x ( a , b ) for x = 0.01 ( .01 ) 1 , a , b = 0.5 ( .5 ) 11 ( 1 ) 50 , with b a , to 7D.

  • Chiccoli et al. (1988) presents a short table of E p ( x ) for p = 9 2 ( 1 ) 1 2 , 0 x 200 to 14S.

  • 36: Richard B. Paris
    37: 26.10 Integer Partitions: Other Restrictions
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    p ( 𝒟 , n ) p ( 𝒟 2 , n ) p ( 𝒟 2 , T , n ) p ( 𝒟 3 , n )
    9 8 5 3 3
    11 12 7 4 5
    15 27 14 9 9
    16 32 17 11 10
    Note that p ( 𝒟 3 , n ) p ( 𝒟 3 , n ) , with strict inequality for n 9 . …
    38: 26.5 Lattice Paths: Catalan Numbers
    Table 26.5.1: Catalan numbers.
    n C ( n ) n C ( n ) n C ( n )
    2 2 9 4862 16 353 57670
    4 14 11 58786 18 4776 38700
    39: 26.16 Multiset Permutations
    Thus inv ( 351322453154 ) = 4 + 8 + 0 + 3 + 1 + 1 + 2 + 3 + 1 + 0 + 1 = 24 , and maj ( 351322453154 ) = 2 + 4 + 8 + 9 + 11 = 34 .
    40: 9.18 Tables
  • Yakovleva (1969) tabulates Fock’s functions U ( x ) π Bi ( x ) , U ( x ) = π Bi ( x ) , V ( x ) π Ai ( x ) , V ( x ) = π Ai ( x ) for x = 9 ( .001 ) 9 . Precision is 7S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Nosova and Tumarkin (1965) tabulates e 0 ( x ) π Hi ( x ) , e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) π Gi ( x ) , e ~ 0 ( x ) = π Gi ( x ) for x = 1 ( .01 ) 10 ; 7D. Also included are the real and imaginary parts of e 0 ( z ) and i e 0 ( z ) , where z = i y and y = 0 ( .01 ) 9 ; 6-7D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.