About the Project

.%E9%98%BF%E6%A0%B9%E5%BB%B7%E4%B8%96%E7%95%8C%E6%9D%AF%E9%A2%84%E9%80%89%E8%B5%9B_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E5%A1%9E%E5%B0%94%E7%BB%B4%E4%BA%9A%E5%AF%B9%E5%93%A5_b5p6v3_2022%E5%B9%B411%E6%9C%8828%E6%97%A521%E6%97%B621%E5%88%8647%E7%A7%92_6smwawga4

AdvancedHelp

(0.049 seconds)

21—30 of 738 matching pages

21: Bibliography C
  • B. C. Carlson (1977a) Elliptic integrals of the first kind. SIAM J. Math. Anal. 8 (2), pp. 231–242.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • C. W. Clark (1979) Coulomb phase shift. American Journal of Physics 47 (8), pp. 683–684.
  • C. W. Clenshaw, F. W. J. Olver, and P. R. Turner (1989) Level-Index Arithmetic: An Introductory Survey. In Numerical Analysis and Parallel Processing (Lancaster, 1987), P. R. Turner (Ed.), Lecture Notes in Math., Vol. 1397, pp. 95–168.
  • W. J. Cody and K. E. Hillstrom (1967) Chebyshev approximations for the natural logarithm of the gamma function. Math. Comp. 21 (98), pp. 198–203.
  • 22: 9.2 Differential Equation
    9.2.2 w = Ai ( z ) , Bi ( z ) , Ai ( z e 2 π i / 3 ) .
    9.2.3 Ai ( 0 ) = 1 3 2 / 3 Γ ( 2 3 ) = 0.35502 80538 ,
    9.2.4 Ai ( 0 ) = 1 3 1 / 3 Γ ( 1 3 ) = 0.25881 94037 ,
    9.2.5 Bi ( 0 ) = 1 3 1 / 6 Γ ( 2 3 ) = 0.61492 66274 ,
    9.2.6 Bi ( 0 ) = 3 1 / 6 Γ ( 1 3 ) = 0.44828 83573 .
    23: 23.10 Addition Theorems and Other Identities
    (23.10.8) continues to hold when e 1 , e 2 , e 3 are permuted cyclically. … For n = 2 , 3 , , …where …
    23.10.17 ( c z | c 𝕃 ) = c 2 ( z | 𝕃 ) ,
    Also, when 𝕃 is replaced by c 𝕃 the lattice invariants g 2 and g 3 are divided by c 4 and c 6 , respectively. …
    24: 23.14 Integrals
    23.14.2 2 ( z ) d z = 1 6 ( z ) + 1 12 g 2 z ,
    25: 23.2 Definitions and Periodic Properties
    The generators of a given lattice 𝕃 are not unique. …where a , b , c , d are integers, then 2 χ 1 , 2 χ 3 are generators of 𝕃 iff … When z 𝕃 the functions are related by … When it is important to display the lattice with the functions they are denoted by ( z | 𝕃 ) , ζ ( z | 𝕃 ) , and σ ( z | 𝕃 ) , respectively. … If 2 ω 1 , 2 ω 3 is any pair of generators of 𝕃 , and ω 2 is defined by (23.2.1), then …
    26: 23.9 Laurent and Other Power Series
    23.9.1 c n = ( 2 n 1 ) w 𝕃 { 0 } w 2 n , n = 2 , 3 , 4 , .
    23.9.2 ( z ) = 1 z 2 + n = 2 c n z 2 n 2 , 0 < | z | < | z 0 | ,
    Explicit coefficients c n in terms of c 2 and c 3 are given up to c 19 in Abramowitz and Stegun (1964, p. 636). For j = 1 , 2 , 3 , and with e j as in §23.3(i), … For a m , n with m = 0 , 1 , , 12 and n = 0 , 1 , , 8 , see Abramowitz and Stegun (1964, p. 637).
    27: 23.7 Quarter Periods
    23.7.1 ( 1 2 ω 1 ) = e 1 + ( e 1 e 3 ) ( e 1 e 2 ) = e 1 + ω 1 2 ( K ( k ) ) 2 k ,
    23.7.2 ( 1 2 ω 2 ) = e 2 i ( e 1 e 2 ) ( e 2 e 3 ) = e 2 i ω 1 2 ( K ( k ) ) 2 k k ,
    23.7.3 ( 1 2 ω 3 ) = e 3 ( e 1 e 3 ) ( e 2 e 3 ) = e 3 ω 1 2 ( K ( k ) ) 2 k ,
    28: 23.3 Differential Equations
    and are denoted by e 1 , e 2 , e 3 . … Let g 2 3 27 g 3 2 , or equivalently Δ be nonzero, or e 1 , e 2 , e 3 be distinct. Given g 2 and g 3 there is a unique lattice 𝕃 such that (23.3.1) and (23.3.2) are satisfied. … Conversely, g 2 , g 3 , and the set { e 1 , e 2 , e 3 } are determined uniquely by the lattice 𝕃 independently of the choice of generators. However, given any pair of generators 2 ω 1 , 2 ω 3 of 𝕃 , and with ω 2 defined by (23.2.1), we can identify the e j individually, via …
    29: 23.1 Special Notation
    The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . … Whittaker and Watson (1927) requires only ( ω 3 / ω 1 ) 0 , instead of ( ω 3 / ω 1 ) > 0 . Abramowitz and Stegun (1964, Chapter 18) considers only rectangular and rhombic lattices (§23.5); ω 1 , ω 3 are replaced by ω , ω for the former and by ω 2 , ω for the latter. Silverman and Tate (1992) and Koblitz (1993) replace 2 ω 1 and 2 ω 3 by ω 1 and ω 3 , respectively. Walker (1996) normalizes 2 ω 1 = 1 , 2 ω 3 = τ , and uses homogeneity (§23.10(iv)). …
    30: 23.6 Relations to Other Functions
    In this subsection 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 , and the lattice roots e 1 , e 2 , e 3 are given by (23.3.9). … Again, in Equations (23.6.16)–(23.6.26), 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 and e 1 , e 2 , e 3 are given by (23.3.9). … Also, 𝕃 1 , 𝕃 2 , 𝕃 3 are the lattices with generators ( 4 K , 2 i K ) , ( 2 K 2 i K , 2 K + 2 i K ) , ( 2 K , 4 i K ) , respectively. … Let z be on the perimeter of the rectangle with vertices 0 , 2 ω 1 , 2 ω 1 + 2 ω 3 , 2 ω 3 . … Let z be a point of different from e 1 , e 2 , e 3 , and define w by …