About the Project

.%E7%94%B7%E7%AF%AE%E4%B8%96%E7%95%8C%E6%9D%AF%E9%A2%84%E9%80%89%E8%B5%9B%E4%B8%AD%E5%9B%BDvs%E9%BB%8E%E5%B7%B4%E5%AB%A9%E3%80%8Ewn4.com%E3%80%8F%E5%92%AA%E5%92%95%E4%B8%96%E7%95%8C%E6%9D%AF%E8%90%A5%E9%94%80%E6%96%B9%E6%A1%88.w6n2c9o.2022%E5%B9%B411%E6%9C%8829%E6%97%A55%E6%97%B652%E5%88%862%E7%A7%92.yeyo8yaka

AdvancedHelp

Did you mean .%E7%94%B7%E7%AF%AE%E4%B8%96%E7%95%8C%E6%9D%AF%E9%A2%84%E9%80%89%E8%B5%9B%E4%B8%AD%E5%9B%abs%E9%BB%8E%E5%B7%B4%E5%AB%A9%E3%80%8Ewn4.com%E3%80%8F%E5%92%AA%E5%92%95%E4%B8%96%E7%95%8C%E6%9D%AF%E8%90%A5%E9%94%80%E6%96%B9%E6%A1%1788.1-2017%E5%B9%411%E6%9C%882%E6%97%155%E6%97%652%E5%88%862%E7%A7%92.tanaka ?

(0.046 seconds)

1—10 of 666 matching pages

1: Bibliography N
β–Ί
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • β–Ί
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • β–Ί
  • E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
  • β–Ί
  • N. E. Nørlund (1955) Hypergeometric functions. Acta Math. 94, pp. 289–349.
  • β–Ί
  • H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
  • 2: 15.7 Continued Fractions
    β–Ί
    15.7.1 𝐅 ⁑ ( a , b ; c ; z ) 𝐅 ⁑ ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 ⁒ z t 1 u 2 ⁒ z t 2 u 3 ⁒ z t 3 β‹― ,
    β–Ί β–Ί
    3: 25.16 Mathematical Applications
    β–Ί
    25.16.2 ψ ⁑ ( x ) = x ΢ ⁑ ( 0 ) ΢ ⁑ ( 0 ) ρ x ρ ρ + o ⁑ ( 1 ) , x ,
    β–Ίwhere H n is given by (25.11.33). … β–Ί H ⁑ ( s ) has a simple pole with residue ΞΆ ⁑ ( 1 2 ⁒ r ) ( = B 2 ⁒ r / ( 2 ⁒ r ) ) at each odd negative integer s = 1 2 ⁒ r , r = 1 , 2 , 3 , . … β–Ί
    25.16.14 r = 1 k = 1 r 1 r ⁒ k ⁒ ( r + k ) = 5 4 ⁒ ΢ ⁑ ( 3 ) ,
    β–Ί
    25.16.15 r = 1 k = 1 r 1 r 2 ⁒ ( r + k ) = 3 4 ⁒ ΢ ⁑ ( 3 ) .
    4: Bibliography Z
    β–Ί
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • β–Ί
  • M. R. Zaghloul (2017) Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44 (2), pp. 22:1–22:9.
  • β–Ί
  • J. Zhang (1996) A note on the Ο„ -method approximations for the Bessel functions Y 0 ⁒ ( z ) and Y 1 ⁒ ( z ) . Comput. Math. Appl. 31 (9), pp. 63–70.
  • β–Ί
  • J. Zhang and J. A. Belward (1997) Chebyshev series approximations for the Bessel function Y n ⁒ ( z ) of complex argument. Appl. Math. Comput. 88 (2-3), pp. 275–286.
  • β–Ί
  • A. Zhedanov (1998) On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. J. Approx. Theory 94 (1), pp. 73–106.
  • 5: Bibliography F
    β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • β–Ί
  • A. M. S. Filho and G. Schwachheim (1967) Algorithm 309. Gamma function with arbitrary precision. Comm. ACM 10 (8), pp. 511–512.
  • β–Ί
  • S. R. Finch (2003) Mathematical Constants. Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, Cambridge.
  • β–Ί
  • C. K. Frederickson and P. L. Marston (1994) Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface. J. Acoust. Soc. Amer. 95 (2), pp. 650–660.
  • 6: Bibliography W
    β–Ί
  • X. Wang and A. K. Rathie (2013) Extension of a quadratic transformation due to Whipple with an application. Adv. Difference Equ., pp. 2013:157, 8.
  • β–Ί
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • β–Ί
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • β–Ί
  • R. Wong and H. Li (1992b) Asymptotic expansions for second-order linear difference equations. J. Comput. Appl. Math. 41 (1-2), pp. 65–94.
  • β–Ί
  • P. Wynn (1966) Upon systems of recursions which obtain among the quotients of the Padé table. Numer. Math. 8 (3), pp. 264–269.
  • 7: DLMF Project News
    error generating summary
    8: 4.26 Integrals
    β–ΊExtensive compendia of indefinite and definite integrals of trigonometric and inverse trigonometric functions include Apelblat (1983, pp. 48–109), Bierens de Haan (1939), Gradshteyn and Ryzhik (2000, Chapters 2–4), Gröbner and Hofreiter (1949, pp. 116–139), Gröbner and Hofreiter (1950, pp. 94–160), and Prudnikov et al. (1986a, §§1.5, 1.7, 2.5, 2.7).
    9: Bibliography
    β–Ί
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • β–Ί
  • G. E. Andrews and R. Askey (1985) Classical Orthogonal Polynomials. In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.), Lecture Notes in Math., Vol. 1171, pp. 36–62.
  • β–Ί
  • G. E. Andrews and D. Foata (1980) Congruences for the q -secant numbers. European J. Combin. 1 (4), pp. 283–287.
  • β–Ί
  • G. E. Andrews, I. P. Goulden, and D. M. Jackson (1986) Shanks’ convergence acceleration transform, Padé approximants and partitions. J. Combin. Theory Ser. A 43 (1), pp. 70–84.
  • β–Ί
  • T. M. Apostol (1985b) Note on the trivial zeros of Dirichlet L -functions. Proc. Amer. Math. Soc. 94 (1), pp. 29–30.
  • 10: 34.5 Basic Properties: 6 ⁒ j Symbol
    β–Ί
    34.5.11 ( 2 ⁒ j 1 + 1 ) ⁒ ( ( J 3 + J 2 J 1 ) ⁒ ( L 3 + L 2 J 1 ) 2 ⁒ ( J 3 ⁒ L 3 + J 2 ⁒ L 2 J 1 ⁒ L 1 ) ) ⁒ { j 1 j 2 j 3 l 1 l 2 l 3 } = j 1 ⁒ E ⁑ ( j 1 + 1 ) ⁒ { j 1 + 1 j 2 j 3 l 1 l 2 l 3 } + ( j 1 + 1 ) ⁒ E ⁑ ( j 1 ) ⁒ { j 1 1 j 2 j 3 l 1 l 2 l 3 } ,
    β–Ί
    34.5.13 E ⁑ ( j ) = ( ( j 2 ( j 2 j 3 ) 2 ) ⁒ ( ( j 2 + j 3 + 1 ) 2 j 2 ) ⁒ ( j 2 ( l 2 l 3 ) 2 ) ⁒ ( ( l 2 + l 3 + 1 ) 2 j 2 ) ) 1 2 .