About the Project

.%E5%8D%A1%E5%A1%94%E5%B0%94%E4%B8%96%E7%95%8C%E6%9D%AF%E5%A5%96%E9%87%91_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E7%AB%9E%E7%8C%9C_b5p6v3_2022%E5%B9%B411%E6%9C%8830%E6%97%A521%E6%97%B649%E5%88%8653%E7%A7%92_3vjzhlfvb.cc

AdvancedHelp

(0.038 seconds)

11—20 of 720 matching pages

11: 12.3 Graphics
See accompanying text
Figure 12.3.1: U ( a , x ) , a = 0. 5, 2, 3. 5, 5, 8. Magnify
See accompanying text
Figure 12.3.2: V ( a , x ) , a = 0. …5, 5, 8. Magnify
See accompanying text
Figure 12.3.5: U ( 8 , x ) , U ¯ ( 8 , x ) , F ( 8 , x ) , 4 2 x 4 2 . Magnify
See accompanying text
Figure 12.3.6: U ( 8 , x ) , U ¯ ( 8 , x ) , G ( 8 , x ) , 4 2 x 4 2 . Magnify
12: 17.16 Mathematical Applications
More recent applications are given in Gasper and Rahman (2004, Chapter 8) and Fine (1988, Chapters 1 and 2).
13: 12.1 Special Notation
An older notation, due to Whittaker (1902), for U ( a , z ) is D ν ( z ) . The notations are related by U ( a , z ) = D a 1 2 ( z ) . Whittaker’s notation D ν ( z ) is useful when ν is a nonnegative integer (Hermite polynomial case).
14: 19.34 Mutual Inductance of Coaxial Circles
19.34.1 c 2 M 2 π = a b 0 2 π ( h 2 + a 2 + b 2 2 a b cos θ ) 1 / 2 cos θ d θ = 2 a b 1 1 t d t ( 1 + t ) ( 1 t ) ( a 3 2 a b t ) = 2 a b I ( 𝐞 5 ) ,
a 3 = h 2 + a 2 + b 2 ,
Application of (19.29.4) and (19.29.7) with α = 1 , a β + b β t = 1 t , δ = 3 , and a γ + b γ t = 1 yields
19.34.5 3 c 2 8 π a b M = 3 R F ( 0 , r + 2 , r 2 ) 2 r 2 R D ( 0 , r + 2 , r 2 ) ,
References for other inductance problems solvable in terms of elliptic integrals are given in Grover (1946, pp. 8 and 283).
15: 9.4 Maclaurin Series
9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
16: 10.62 Graphs
See accompanying text
Figure 10.62.1: ber x , bei x , ber x , bei x , 0 x 8 . Magnify
See accompanying text
Figure 10.62.2: ker x , kei x , ker x , kei x , 0 x 8 . Magnify
See accompanying text
Figure 10.62.3: e x / 2 ber x , e x / 2 bei x , e x / 2 M ( x ) , 0 x 8 . Magnify
See accompanying text
Figure 10.62.4: e x / 2 ker x , e x / 2 kei x , e x / 2 N ( x ) , 0 x 8 . Magnify
17: 30.3 Eigenvalues
α k = γ 2 ( k + 2 m + 1 ) ( k + 2 m + 2 ) ( 2 k + 2 m + 3 ) ( 2 k + 2 m + 5 ) ,
30.3.11 8 = 2 ( 4 m 2 1 ) 2 A + 1 16 B + 1 8 C + 1 2 D ,
B = ( n m 3 ) ( n m 2 ) ( n m 1 ) ( n m ) ( n + m 3 ) ( n + m 2 ) ( n + m 1 ) ( n + m ) ( 2 n 7 ) ( 2 n 5 ) 2 ( 2 n 3 ) 3 ( 2 n 1 ) 4 ( 2 n + 1 ) ( n m + 1 ) ( n m + 2 ) ( n m + 3 ) ( n m + 4 ) ( n + m + 1 ) ( n + m + 2 ) ( n + m + 3 ) ( n + m + 4 ) ( 2 n + 1 ) ( 2 n + 3 ) 4 ( 2 n + 5 ) 3 ( 2 n + 7 ) 2 ( 2 n + 9 ) ,
C = ( n m + 1 ) 2 ( n m + 2 ) 2 ( n + m + 1 ) 2 ( n + m + 2 ) 2 ( 2 n + 1 ) 2 ( 2 n + 3 ) 7 ( 2 n + 5 ) 2 ( n m 1 ) 2 ( n m ) 2 ( n + m 1 ) 2 ( n + m ) 2 ( 2 n 3 ) 2 ( 2 n 1 ) 7 ( 2 n + 1 ) 2 ,
D = ( n m 1 ) ( n m ) ( n m + 1 ) ( n m + 2 ) ( n + m 1 ) ( n + m ) ( n + m + 1 ) ( n + m + 2 ) ( 2 n 3 ) ( 2 n 1 ) 4 ( 2 n + 1 ) 2 ( 2 n + 3 ) 4 ( 2 n + 5 ) .
18: 24.2 Definitions and Generating Functions
24.2.6 2 e t e 2 t + 1 = n = 0 E n t n n ! , | t | < 1 2 π ,
E 2 n + 1 = 0 ,
( 1 ) n E 2 n > 0 .
24.2.8 2 e x t e t + 1 = n = 0 E n ( x ) t n n ! , | t | < π ,
Table 24.2.3: Bernoulli numbers B n = N / D .
n N D B n
19: 19.30 Lengths of Plane Curves
19.30.5 L ( a , b ) = 4 a E ( k ) = 8 a R G ( 0 , b 2 / a 2 , 1 ) = 8 R G ( 0 , a 2 , b 2 ) = 8 a b R G ( 0 , a 2 , b 2 ) ,
19.30.6 s ( 1 / k ) = a 2 b 2 F ( ϕ , k ) = a 2 b 2 R F ( c 1 , c k 2 , c ) , k 2 = ( a 2 b 2 ) / ( a 2 + λ ) , c = csc 2 ϕ .
19.30.9 s = 1 2 I ( 𝐞 1 ) = 1 3 a 2 b 2 R D ( r , r + b 2 + a 2 , r + b 2 ) + y r + b 2 + a 2 r + b 2 , r = b 4 / y 2 .
For s in terms of E ( ϕ , k ) , F ( ϕ , k ) , and an algebraic term, see Byrd and Friedman (1971, p. 3). …
20: 11.3 Graphics
See accompanying text
Figure 11.3.7: | 𝐇 0 ( x + i y ) | for 8 x 8 and 3 y 3 . Magnify 3D Help
See accompanying text
Figure 11.3.8: | 𝐊 0 ( x + i y ) | (principal value) for 8 x 8 and 3 y 3 . … Magnify 3D Help
See accompanying text
Figure 11.3.9: | 𝐇 1 2 ( x + i y ) | (principal value) for 8 x 8 and 3 y 3 . … Magnify 3D Help
See accompanying text
Figure 11.3.10: | 𝐊 1 2 ( x + i y ) | (principal value) for 8 x 8 and 3 y 3 . … Magnify 3D Help
See accompanying text
Figure 11.3.12: | 𝐊 1 ( x + i y ) | (principal value) for 8 x 8 and 3 y 3 . … Magnify 3D Help