About the Project

👉1(716)351-621📞Delta Flights 🪐stirlingses 🛸picker Change honneur 🌍Number

AdvancedHelp

The term"bigdelta" was not found.Possible alternative term: "bigeta".

(0.003 seconds)

1—10 of 845 matching pages

1: Bibliography J
  • L. Jager (1997) Fonctions de Mathieu et polynômes de Klein-Gordon. C. R. Acad. Sci. Paris Sér. I Math. 325 (7), pp. 713–716 (French).
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • A. Jonquière (1889) Note sur la série n = 1 x n / n s . Bull. Soc. Math. France 17, pp. 142–152 (French).
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).
  • 2: 24.1 Special Notation
    Bernoulli Numbers and Polynomials
    The origin of the notation B n , B n ( x ) , is not clear. …
    Euler Numbers and Polynomials
    Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
    3: Bibliography D
  • P. Deligne, P. Etingof, D. S. Freed, D. Kazhdan, J. W. Morgan, and D. R. Morrison (Eds.) (1999) Quantum Fields and Strings: A Course for Mathematicians. Vol. 1, 2. American Mathematical Society, Providence, RI.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • R. B. Dingle (1957a) The Bose-Einstein integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 240–244.
  • R. B. Dingle (1957b) The Fermi-Dirac integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η + 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 225–239.
  • 4: 26.8 Set Partitions: Stirling Numbers
    s ( n , k ) denotes the Stirling number of the first kind: ( 1 ) n k times the number of permutations of { 1 , 2 , , n } with exactly k cycles. … S ( n , k ) denotes the Stirling number of the second kind: the number of partitions of { 1 , 2 , , n } into exactly k nonempty subsets. … where ( x ) n is the Pochhammer symbol: x ( x + 1 ) ( x + n 1 ) . … For n 1 , … For asymptotic approximations for s ( n + 1 , k + 1 ) and S ( n , k ) that apply uniformly for 1 k n as n see Temme (1993) and Temme (2015, Chapter 34). …
    5: 26.1 Special Notation
    ( m n ) binomial coefficient.
    s ( n , k ) Stirling numbers of the first kind.
    x n ¯ = x ( x + 1 ) ( x + 2 ) ( x + n 1 ) ,
    x n ¯ = x ( x 1 ) ( x 2 ) ( x n + 1 ) .
    Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
    6: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    ( n n 1 , n 2 , , n k ) is the number of ways of placing n = n 1 + n 2 + + n k distinct objects into k labeled boxes so that there are n j objects in the j th box. It is also the number of k -dimensional lattice paths from ( 0 , 0 , , 0 ) to ( n 1 , n 2 , , n k ) . For k = 0 , 1 , the multinomial coefficient is defined to be 1 . … M 2 is the number of permutations of { 1 , 2 , , n } with a 1 cycles of length 1, a 2 cycles of length 2, , and a n cycles of length n : … M 3 is the number of set partitions of { 1 , 2 , , n } with a 1 subsets of size 1, a 2 subsets of size 2, , and a n subsets of size n : …
    7: 24.20 Tables
    §24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. … For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
    8: 22.7 Landen Transformations
    22.7.1 k 1 = 1 k 1 + k ,
    22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
    22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
    22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
    k 2 = 1 k 1 + k ,
    9: 26.13 Permutations: Cycle Notation
    𝔖 n denotes the set of permutations of { 1 , 2 , , n } . … is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … The number of elements of 𝔖 n with cycle type ( a 1 , a 2 , , a n ) is given by (26.4.7). The Stirling cycle numbers of the first kind, denoted by [ n k ] , count the number of permutations of { 1 , 2 , , n } with exactly k cycles. …
    10: 26.3 Lattice Paths: Binomial Coefficients
    ( m n ) is the number of ways of choosing n objects from a collection of m distinct objects without regard to order. ( m + n n ) is the number of lattice paths from ( 0 , 0 ) to ( m , n ) . …The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
    26.3.4 m = 0 ( m + n m ) x m = 1 ( 1 x ) n + 1 , | x | < 1 .
    26.3.6 ( m n ) = m n ( m 1 n 1 ) = m n + 1 n ( m n 1 ) , m n 1 ,