About the Project

������������������������������/������������/������������������CXFK69���epWz5VZ

AdvancedHelp

(0.034 seconds)

21—30 of 676 matching pages

21: 5.19 Mathematical Applications
5.19.2 a k = 2 k + 2 3 1 k + 1 2 1 k + 1 = ( 1 k + 1 1 k + 1 2 ) 2 ( 1 k + 1 1 k + 2 3 ) .
5.19.3 S = ψ ( 1 2 ) 2 ψ ( 2 3 ) γ = 3 ln 3 2 ln 2 1 3 π 3 .
V = π 1 2 n r n Γ ( 1 2 n + 1 ) ,
S = 2 π 1 2 n r n 1 Γ ( 1 2 n ) = n r V .
22: 13.23 Integrals
13.23.1 0 e z t t ν 1 M κ , μ ( t ) d t = Γ ( μ + ν + 1 2 ) ( z + 1 2 ) μ + ν + 1 2 F 1 2 ( 1 2 + μ κ , 1 2 + μ + ν 1 + 2 μ ; 1 z + 1 2 ) , μ + ν + 1 2 > 0 , z > 1 2 .
13.23.2 0 e z t t μ 1 2 M κ , μ ( t ) d t = Γ ( 2 μ + 1 ) ( z + 1 2 ) κ μ 1 2 ( z 1 2 ) κ μ 1 2 , μ > 1 2 , z > 1 2 ,
13.23.9 0 e 1 2 t t μ 1 2 ( ν + 1 ) M κ , μ ( t ) J ν ( 2 x t ) d t = Γ ( 1 + 2 μ ) Γ ( 1 2 μ + κ + ν ) e 1 2 x x 1 2 ( κ μ 3 2 ) M 1 2 ( κ + 3 μ ν + 1 2 ) , 1 2 ( κ μ + ν 1 2 ) ( x ) , x > 0 , 1 2 < μ < ( κ + 1 2 ν ) + 3 4 ,
Let f ( x ) be absolutely integrable on the interval [ r , R ] for all positive r < R , f ( x ) = O ( x ρ 0 ) as x 0 + , and f ( x ) = O ( e ρ 1 x ) as x + , where ρ 1 > 1 2 . Then for μ in the half-plane μ μ 1 > max ( ρ 0 , κ 1 2 )
23: 24.6 Explicit Formulas
24.6.2 B n = 1 n + 1 k = 1 n j = 1 k ( 1 ) j j n ( n + 1 k j ) / ( n k ) ,
24.6.6 E 2 n = k = 1 2 n ( 1 ) k 2 k 1 ( 2 n + 1 k + 1 ) j = 0 1 2 k 1 2 ( k j ) ( k 2 j ) 2 n .
24.6.7 B n ( x ) = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) ( x + j ) n ,
24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) j n ,
24.6.12 E 2 n = k = 0 2 n 1 2 k j = 0 k ( 1 ) j ( k j ) ( 1 + 2 j ) 2 n .
24: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
2 ( sin 1 2 x ) α + 1 2 ( cos 1 2 x ) β + 1 2 × P n ( α , β ) ( cos x ) 1 0 1 4 α 2 4 sin 2 1 2 x + 1 4 β 2 4 cos 2 1 2 x ( n + 1 2 ( α + β + 1 ) ) 2
3 ( sin x ) α + 1 2 P n ( α , α ) ( cos x ) 1 0 ( 1 4 α 2 ) / sin 2 x ( n + α + 1 2 ) 2
9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
10 e 1 2 x x 1 2 α L n ( α ) ( x ) x 1 1 4 x 1 4 α 2 x 1 n + 1 2 ( α + 1 )
13 e 1 2 x 2 H n ( x ) 1 0 x 2 2 n + 1
25: 13.16 Integral Representations
If 1 2 + μ κ 0 , 1 , 2 , , then …where the contour of integration separates the poles of Γ ( t κ ) from those of Γ ( 1 2 + μ t ) . If 1 2 ± μ κ 0 , 1 , 2 , , then …where the contour of integration separates the poles of Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) from those of Γ ( κ t ) . …where the contour of integration passes all the poles of Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) on the right-hand side.
26: 36.6 Scaling Relations
umbilics:  β ( U ) = 1 3 .
umbilics:  γ x ( U ) = 2 3 ,
Table 36.6.1: Special cases of scaling exponents for cuspoids.
singularity K β K γ 1 K γ 2 K γ 3 K γ K
fold 1 1 6 2 3 2 3
cusp 2 1 4 3 4 1 2 5 4
swallowtail 3 3 10 4 5 3 5 2 5 9 5
27: 11.4 Basic Properties
11.4.5 𝐇 1 2 ( z ) = ( 2 π z ) 1 2 ( 1 cos z ) ,
11.4.6 𝐇 1 2 ( z ) = ( 2 π z ) 1 2 sin z ,
and | ν 0 + 3 2 | is the smallest of the numbers | ν + 3 2 | , | ν + 5 2 | , | ν + 9 2 | , . …
11.4.20 𝐇 ν ( z ) = ( 1 2 z ) ν + 1 2 Γ ( ν + 1 2 ) k = 0 ( 1 2 z ) k k ! ( k + ν + 1 2 ) J k + 1 2 ( z ) ,
11.4.22 𝐇 1 ( z ) = 2 π ( 1 J 0 ( z ) ) + 4 π k = 1 J 2 k ( z ) 4 k 2 1 = 4 k = 0 J 2 k + 1 2 ( 1 2 z ) J 2 k + 3 2 ( 1 2 z ) .
28: 10.65 Power Series
ber ν x = ( 1 2 x ) ν k = 0 cos ( 3 4 ν π + 1 2 k π ) k ! Γ ( ν + k + 1 ) ( 1 4 x 2 ) k ,
bei x = 1 4 x 2 ( 1 4 x 2 ) 3 ( 3 ! ) 2 + ( 1 4 x 2 ) 5 ( 5 ! ) 2 .
10.65.3 ker n x = 1 2 ( 1 2 x ) n k = 0 n 1 ( n k 1 ) ! k ! cos ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ln ( 1 2 x ) ber n x + 1 4 π bei n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! cos ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ,
10.65.4 kei n x = 1 2 ( 1 2 x ) n k = 0 n 1 ( n k 1 ) ! k ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ln ( 1 2 x ) bei n x 1 4 π ber n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k .
ker x = ln ( 1 2 x ) ber x + 1 4 π bei x + k = 0 ( 1 ) k ψ ( 2 k + 1 ) ( ( 2 k ) ! ) 2 ( 1 4 x 2 ) 2 k ,
29: 10.70 Zeros
10.70.1 μ 1 16 t + μ 1 32 t 2 + ( μ 1 ) ( 5 μ + 19 ) 1536 t 3 + 3 ( μ 1 ) 2 512 t 4 + .
zeros of  ber ν x 2 ( t f ( t ) ) , t = ( m 1 2 ν 3 8 ) π ,
zeros of  bei ν x 2 ( t f ( t ) ) , t = ( m 1 2 ν + 1 8 ) π ,
zeros of  ker ν x 2 ( t + f ( t ) ) , t = ( m 1 2 ν 5 8 ) π ,
zeros of  kei ν x 2 ( t + f ( t ) ) , t = ( m 1 2 ν 1 8 ) π .
30: 15.8 Transformations of Variable
15.8.26 F ( a , 1 a c ; z ) = ( 1 z ) c 1 Γ ( c ) Γ ( 1 2 ) Γ ( 1 2 ( c a + 1 ) ) Γ ( 1 2 c + 1 2 a ) F ( 1 2 c 1 2 a , 1 2 c + 1 2 a 1 2 1 2 ; ( 1 2 z ) 2 ) + ( 1 2 z ) ( 1 z ) c 1 Γ ( c ) Γ ( 1 2 ) Γ ( 1 2 c 1 2 a ) Γ ( 1 2 ( c + a 1 ) ) F ( 1 2 c 1 2 a + 1 2 , 1 2 c + 1 2 a 3 2 ; ( 1 2 z ) 2 ) , | ph z | < π , | ph ( 1 z ) | < π .
b = 1 3 a + 1 3 , c = 2 b = a b + 1 in Groups 1 and 2. …
15.8.29 F ( a , 1 3 a + 1 3 2 3 a + 2 3 ; z ) = ( 1 + z ) 2 a F ( a , 2 3 a + 1 6 4 3 a + 1 3 ; 4 z ( 1 + z ) 2 ) .
15.8.30 ( 1 1 2 z ) a F ( 1 2 a , 1 2 a + 1 2 1 3 a + 5 6 ; ( z 2 z ) 2 ) = F ( a , 1 3 a + 1 3 2 3 a + 2 3 ; z ) = ( 1 + z ) a F ( 1 2 a , 1 2 a + 1 2 2 3 a + 2 3 ; 4 z ( 1 + z ) 2 ) ,
provided that z lies in the intersection of the open disks | z 1 4 ± 1 4 3 i | < 1 2 3 , or equivalently, | ph ( ( 1 z ) / ( 1 + 2 z ) ) | < π / 3 . …