About the Project

英国旅行签证存款证明〖办证V信ATV1819〗exp

AdvancedHelp

(0.002 seconds)

1—10 of 113 matching pages

1: 17.3 q -Elementary and q -Special Functions
17.3.1 e q ( x ) = n = 0 ( 1 q ) n x n ( q ; q ) n = 1 ( ( 1 q ) x ; q ) ,
17.3.2 E q ( x ) = n = 0 ( 1 q ) n q ( n 2 ) x n ( q ; q ) n = ( ( 1 q ) x ; q ) .
17.3.3 sin q ( x ) = 1 2 i ( e q ( i x ) e q ( i x ) ) = n = 0 ( 1 q ) 2 n + 1 ( 1 ) n x 2 n + 1 ( q ; q ) 2 n + 1 ,
17.3.4 Sin q ( x ) = 1 2 i ( E q ( i x ) E q ( i x ) ) = n = 0 ( 1 q ) 2 n + 1 q n ( 2 n + 1 ) ( 1 ) n x 2 n + 1 ( q ; q ) 2 n + 1 .
17.3.5 cos q ( x ) = 1 2 ( e q ( i x ) + e q ( i x ) ) = n = 0 ( 1 q ) 2 n ( 1 ) n x 2 n ( q ; q ) 2 n ,
2: 4.47 Approximations
Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . … Hart et al. (1968) give ln , exp , sin , cos , tan , cot , arcsin , arccos , arctan , sinh , cosh , tanh , arcsinh , arccosh . … Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
3: 4.2 Definitions
The function exp is an entire function of z , with no real or complex zeros. …
4.2.20 exp ( z + 2 π i ) = exp z .
4.2.21 exp ( z ) = 1 / exp ( z ) .
4.2.22 | exp z | = exp ( z ) .
4.2.28 z a = exp ( a ln z ) .
4: 36.11 Leading-Order Asymptotics
36.11.3 Ψ 2 ( 0 , y ) = { π / y ( exp ( 1 4 i π ) + o ( 1 ) ) , y + , π / | y | exp ( 1 4 i π ) ( 1 + i 2 exp ( 1 4 i y 2 ) + o ( 1 ) ) , y .
36.11.4 Ψ 3 ( x , 0 , 0 ) = 2 π ( 5 | x | 3 ) 1 / 8 { exp ( 2 2 ( x / 5 ) 5 / 4 ) ( cos ( 2 2 ( x / 5 ) 5 / 4 1 8 π ) + o ( 1 ) ) , x + , cos ( 4 ( | x | / 5 ) 5 / 4 1 4 π ) + o ( 1 ) , x .
36.11.5 Ψ 3 ( 0 , y , 0 ) = Ψ 3 ( 0 , y , 0 ) ¯ = exp ( 1 4 i π ) π / y ( 1 ( i / 3 ) exp ( 3 2 i ( 2 y / 5 ) 5 / 3 ) + o ( 1 ) ) , y + .
36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
36.11.8 Ψ ( H ) ( 0 , 0 , z ) = 2 π z ( 1 i 3 exp ( 1 27 i z 3 ) + o ( 1 ) ) , z ± .
5: 36.2 Catastrophes and Canonical Integrals
36.2.6 Ψ ( E ) ( 𝐱 ) = 2 π / 3 exp ( i ( 4 27 z 3 + 1 3 x z 1 4 π ) ) exp ( 7 π i / 12 ) exp ( π i / 12 ) exp ( i ( u 6 + 2 z u 4 + ( z 2 + x ) u 2 + y 2 12 u 2 ) ) d u ,
Ψ ( E ) ( 𝐱 ) = 4 π 3 1 / 3 exp ( i ( 2 27 z 3 1 3 x z ) ) ( exp ( i π 6 ) F + ( 𝐱 ) + exp ( i π 6 ) F ( 𝐱 ) ) ,
F ± ( 𝐱 ) = 0 cos ( r y exp ( ± i π 6 ) ) exp ( 2 i r 2 z exp ( ± i π 3 ) ) Ai ( 3 2 / 3 r 2 + 3 1 / 3 exp ( i π 3 ) ( 1 3 z 2 x ) ) d r .
36.2.9 Ψ ( H ) ( 𝐱 ) = 2 π 3 1 / 3 exp ( 5 π i / 6 ) exp ( π i / 6 ) exp ( i ( s 3 + x s ) ) Ai ( z s + y 3 1 / 3 ) d s .
6: 9.5 Integral Representations
9.5.3 Bi ( x ) = 1 π 0 exp ( 1 3 t 3 + x t ) d t + 1 π 0 sin ( 1 3 t 3 + x t ) d t .
9.5.4 Ai ( z ) = 1 2 π i e π i / 3 e π i / 3 exp ( 1 3 t 3 z t ) d t ,
9.5.5 Bi ( z ) = 1 2 π e π i / 3 exp ( 1 3 t 3 z t ) d t + 1 2 π e π i / 3 exp ( 1 3 t 3 z t ) d t .
9.5.6 Ai ( z ) = 3 2 π 0 exp ( t 3 3 z 3 3 t 3 ) d t , | ph z | < 1 6 π .
9.5.7 Ai ( z ) = e ζ π 0 exp ( z 1 / 2 t 2 ) cos ( 1 3 t 3 ) d t , | ph z | < π .
7: 18.32 OP’s with Respect to Freud Weights
18.32.1 w ( x ) = exp ( Q ( x ) ) , < x < ,
18.32.2 w ( x ) = | x | α exp ( Q ( x ) ) , x ,  α > 1 ,
8: 20.6 Power Series
20.6.2 θ 1 ( π z | τ ) = π z θ 1 ( 0 | τ ) exp ( j = 1 1 2 j δ 2 j ( τ ) z 2 j ) ,
20.6.3 θ 2 ( π z | τ ) = θ 2 ( 0 | τ ) exp ( j = 1 1 2 j α 2 j ( τ ) z 2 j ) ,
20.6.4 θ 3 ( π z | τ ) = θ 3 ( 0 | τ ) exp ( j = 1 1 2 j β 2 j ( τ ) z 2 j ) ,
20.6.5 θ 4 ( π z | τ ) = θ 4 ( 0 | τ ) exp ( j = 1 1 2 j γ 2 j ( τ ) z 2 j ) .
9: 32.15 Orthogonal Polynomials
32.15.1 exp ( 1 4 ξ 4 z ξ 2 ) p m ( ξ ) p n ( ξ ) d ξ = δ m , n ,
10: 4.12 Generalized Logarithms and Exponentials
4.12.7 ϕ ( x ) = exp exp x  times ( x x ) , x > 1 .