About the Project

梅州麻将游戏大厅,网上梅州麻将游戏规则,【复制打开网址:33kk55.com】正规博彩平台,在线赌博平台,梅州麻将游戏玩法介绍,真人梅州麻将游戏规则,网上真人棋牌游戏平台,真人博彩游戏平台网址YBMNMhMhMMyNXMsX

AdvancedHelp

(0.002 seconds)

21—30 of 48 matching pages

21: Bibliography E
  • Á. Elbert and A. Laforgia (2000) Further results on McMahon’s asymptotic approximations. J. Phys. A 33 (36), pp. 6333–6341.
  • E. B. Elliott (1903) A formula including Legendre’s E K + K E K K = 1 2 π . Messenger of Math. 33, pp. 31–32.
  • 22: Bibliography N
  • M. Neher (2007) Complex standard functions and their implementation in the CoStLy library. ACM Trans. Math. Softw. 33 (1), pp. Article 2.
  • C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
  • 23: Bibliography
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • G. E. Andrews (1966b) q -identities of Auluck, Carlitz, and Rogers. Duke Math. J. 33 (3), pp. 575–581.
  • R. Askey, T. H. Koornwinder, and M. Rahman (1986) An integral of products of ultraspherical functions and a q -extension. J. London Math. Soc. (2) 33 (1), pp. 133–148.
  • R. Askey (1990) Graphs as an Aid to Understanding Special Functions. In Asymptotic and Computational Analysis, R. Wong (Ed.), Lecture Notes in Pure and Appl. Math., Vol. 124, pp. 3–33.
  • 24: Bibliography G
  • B. Gabutti (1979) On high precision methods for computing integrals involving Bessel functions. Math. Comp. 33 (147), pp. 1049–1057.
  • B. Gambier (1910) Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes. Acta Math. 33 (1), pp. 1–55.
  • G. Gasper (1981) Orthogonality of certain functions with respect to complex valued weights. Canad. J. Math. 33 (5), pp. 1261–1270.
  • A. Gil, J. Segura, and N. M. Temme (2003b) Computing special functions by using quadrature rules. Numer. Algorithms 33 (1-4), pp. 265–275.
  • D. P. Gupta and M. E. Muldoon (2000) Riccati equations and convolution formulae for functions of Rayleigh type. J. Phys. A 33 (7), pp. 1363–1368.
  • 25: Bibliography K
  • G. A. Kalugin and D. J. Jeffrey (2011) Unimodal sequences show that Lambert W is Bernstein. C. R. Math. Acad. Sci. Soc. R. Can. 33 (2), pp. 50–56.
  • S. Karlin and J. L. McGregor (1961) The Hahn polynomials, formulas and an application. Scripta Math. 26, pp. 33–46.
  • M. K. Kerimov and S. L. Skorokhodov (1986) On multiple zeros of derivatives of Bessel’s cylindrical functions. Dokl. Akad. Nauk SSSR 288 (2), pp. 285–288 (Russian).
  • M. K. Kerimov and S. L. Skorokhodov (1988) Multiple complex zeros of derivatives of the cylindrical Bessel functions. Dokl. Akad. Nauk SSSR 299 (3), pp. 614–618 (Russian).
  • I. M. Krichever and S. P. Novikov (1989) Algebras of Virasoro type, the energy-momentum tensor, and operator expansions on Riemann surfaces. Funktsional. Anal. i Prilozhen. 23 (1), pp. 24–40 (Russian).
  • 26: Bibliography M
  • F. Marcellán and Y. Xu (2015) On Sobolev orthogonal polynomials. Expo. Math. 33 (3), pp. 308–352.
  • L. J. Mordell (1958) On the evaluation of some multiple series. J. London Math. Soc. (2) 33, pp. 368–371.
  • R. Morris (1979) The dilogarithm function of a real argument. Math. Comp. 33 (146), pp. 778–787.
  • L. Moser and M. Wyman (1958a) Asymptotic development of the Stirling numbers of the first kind. J. London Math. Soc. 33, pp. 133–146.
  • R. J. Muirhead (1978) Latent roots and matrix variates: A review of some asymptotic results. Ann. Statist. 6 (1), pp. 5–33.
  • 27: 27.13 Functions
    See also Apostol (1976, Chapter 14) and Apostol and Niven (1994, pp. 33–34). …
    28: 32.9 Other Elementary Solutions
    29: 10.67 Asymptotic Expansions for Large Argument
    10.67.9 ber 2 x + bei 2 x e x 2 2 π x ( 1 + 1 4 2 1 x + 1 64 1 x 2 33 256 2 1 x 3 1797 8192 1 x 4 + ) ,
    10.67.13 ker 2 x + kei 2 x π 2 x e x 2 ( 1 1 4 2 1 x + 1 64 1 x 2 + 33 256 2 1 x 3 1797 8192 1 x 4 + ) ,
    30: 22.6 Elementary Identities