About the Project

多伦多留学生伴游/各地小网红模特【杏彩体育qee9.com】45LGN

AdvancedHelp

(0.002 seconds)

11—20 of 49 matching pages

11: 8.2 Definitions and Basic Properties
P ( a , z ) = γ ( a , z ) Γ ( a ) ,
Q ( a , z ) = Γ ( a , z ) Γ ( a ) ,
When z 0 , Γ ( a , z ) is an entire function of a , and γ ( a , z ) is meromorphic with simple poles at a = n , n = 0 , 1 , 2 , , with residue ( 1 ) n / n ! . …
8.2.12 d 2 w d z 2 + ( 1 + 1 a z ) d w d z = 0 .
8.2.13 d 2 w d z 2 ( 1 + 1 a z ) d w d z + 1 a z 2 w = 0 .
12: 26.6 Other Lattice Path Numbers
Table 26.6.3: Narayana numbers N ( n , k ) .
n k
10 0 1 45 540 2520 5292 5292 2520 540 45 1
13: Bibliography E
  • E. B. Elliott (1903) A formula including Legendre’s E K + K E K K = 1 2 π . Messenger of Math. 33, pp. 31–32.
  • W. N. Everitt (2005b) Charles Sturm and the development of Sturm-Liouville theory in the years 1900 to 1950. In Sturm-Liouville theory, pp. 45–74.
  • 14: 3.4 Differentiation
    B 3 6 = 1 720 ( 12 8 t 45 t 2 + 20 t 3 + 15 t 4 6 t 5 ) ,
    B 3 6 = 1 720 ( 12 + 8 t 45 t 2 20 t 3 + 15 t 4 + 6 t 5 ) .
    B 1 7 = 1 240 ( 144 360 t 48 t 2 + 260 t 3 45 t 4 30 t 5 + 7 t 6 ) ,
    15: 22.18 Mathematical Applications
    With the identification x = sn ( z , k ) , y = d ( sn ( z , k ) ) / d z , the addition law (22.18.8) is transformed into the addition theorem (22.8.1); see Akhiezer (1990, pp. 42, 45, 73–74) and McKean and Moll (1999, §§2.14, 2.16). …
    16: 34.2 Definition: 3 j Symbol
    34.2.4 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 1 j 2 m 3 Δ ( j 1 j 2 j 3 ) ( ( j 1 + m 1 ) ! ( j 1 m 1 ) ! ( j 2 + m 2 ) ! ( j 2 m 2 ) ! ( j 3 + m 3 ) ! ( j 3 m 3 ) ! ) 1 2 s ( 1 ) s s ! ( j 1 + j 2 j 3 s ) ! ( j 1 m 1 s ) ! ( j 2 + m 2 s ) ! ( j 3 j 2 + m 1 + s ) ! ( j 3 j 1 m 2 + s ) ! ,
    34.2.5 Δ ( j 1 j 2 j 3 ) = ( ( j 1 + j 2 j 3 ) ! ( j 1 j 2 + j 3 ) ! ( j 1 + j 2 + j 3 ) ! ( j 1 + j 2 + j 3 + 1 ) ! ) 1 2 ,
    34.2.6 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 2 m 1 + m 3 ( j 1 + j 2 + m 3 ) ! ( j 2 + j 3 m 1 ) ! Δ ( j 1 j 2 j 3 ) ( j 1 + j 2 + j 3 + 1 ) ! ( ( j 1 + m 1 ) ! ( j 3 m 3 ) ! ( j 1 m 1 ) ! ( j 2 + m 2 ) ! ( j 2 m 2 ) ! ( j 3 + m 3 ) ! ) 1 2 F 2 3 ( j 1 j 2 j 3 1 , j 1 + m 1 , j 3 m 3 ; j 1 j 2 m 3 , j 2 j 3 + m 1 ; 1 ) ,
    17: Bibliography L
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • S. Lewanowicz (1985) Recurrence relations for hypergeometric functions of unit argument. Math. Comp. 45 (172), pp. 521–535.
  • S. Lewanowicz (1987) Corrigenda: “Recurrence relations for hypergeometric functions of unit argument” [Math. Comp. 45 (1985), no. 172, 521–535; MR 86m:33004]. Math. Comp. 48 (178), pp. 853.
  • 18: Bibliography Z
  • H. S. Zuckerman (1939) The computation of the smaller coefficients of J ( τ ) . Bull. Amer. Math. Soc. 45 (12), pp. 917–919.
  • 19: 10.67 Asymptotic Expansions for Large Argument
    10.67.11 ber x ber x + bei x bei x e x 2 2 π x ( 1 2 3 8 1 x 15 64 2 1 x 2 45 512 1 x 3 + 315 8192 2 1 x 4 + ) ,
    10.67.15 ker x ker x + kei x kei x π 2 x e x 2 ( 1 2 + 3 8 1 x 15 64 2 1 x 2 + 45 512 1 x 3 + 315 8192 2 1 x 4 + ) ,
    20: Bibliography G
  • W. Gautschi (1996) Orthogonal Polynomials: Applications and Computation. In Acta Numerica, 1996, A. Iserles (Ed.), Acta Numerica, Vol. 5, pp. 45–119.
  • E. T. Goodwin (1949b) The evaluation of integrals of the form f ( x ) e x 2 𝑑 x . Proc. Cambridge Philos. Soc. 45 (2), pp. 241–245.
  • D. Goss (1978) Von Staudt for 𝐅 q [ T ] . Duke Math. J. 45 (4), pp. 885–910.