About the Project

北海道教育大学证书【假证加微aptao168】1tSIPmf

AdvancedHelp

(0.004 seconds)

11—20 of 821 matching pages

11: 22.7 Landen Transformations
22.7.1 k 1 = 1 k 1 + k ,
22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
k 2 = 1 k 1 + k ,
12: 34.3 Basic Properties: 3 j Symbol
When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example, …
34.3.14 ( j 1 ( j 1 + 1 ) j 2 ( j 2 + 1 ) j 3 ( j 3 + 1 ) 2 m 2 m 3 ) ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( ( j 2 m 2 ) ( j 2 + m 2 + 1 ) ( j 3 m 3 + 1 ) ( j 3 + m 3 ) ) 1 2 ( j 1 j 2 j 3 m 1 m 2 + 1 m 3 1 ) + ( ( j 2 m 2 + 1 ) ( j 2 + m 2 ) ( j 3 m 3 ) ( j 3 + m 3 + 1 ) ) 1 2 ( j 1 j 2 j 3 m 1 m 2 1 m 3 + 1 ) ,
34.3.15 ( 2 j 1 + 1 ) ( ( j 2 ( j 2 + 1 ) j 3 ( j 3 + 1 ) ) m 1 j 1 ( j 1 + 1 ) ( m 3 m 2 ) ) ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 1 + 1 ) ( j 1 2 ( j 2 j 3 ) 2 ) 1 2 ( ( j 2 + j 3 + 1 ) 2 j 1 2 ) 1 2 ( j 1 2 m 1 2 ) 1 2 ( j 1 1 j 2 j 3 m 1 m 2 m 3 ) + j 1 ( ( j 1 + 1 ) 2 ( j 2 j 3 ) 2 ) 1 2 ( ( j 2 + j 3 + 1 ) 2 ( j 1 + 1 ) 2 ) 1 2 ( ( j 1 + 1 ) 2 m 1 2 ) 1 2 ( j 1 + 1 j 2 j 3 m 1 m 2 m 3 ) .
13: 10.51 Recurrence Relations and Derivatives
Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
f n 1 ( z ) + f n + 1 ( z ) = ( ( 2 n + 1 ) / z ) f n ( z ) ,
n f n 1 ( z ) ( n + 1 ) f n + 1 ( z ) = ( 2 n + 1 ) f n ( z ) , n = 1 , 2 , ,
Let g n ( z ) denote 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , or ( 1 ) n 𝗄 n ( z ) . …
n g n 1 ( z ) + ( n + 1 ) g n + 1 ( z ) = ( 2 n + 1 ) g n ( z ) , n = 1 , 2 , ,
14: 26.3 Lattice Paths: Binomial Coefficients
The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
26.3.3 n = 0 m ( m n ) x n = ( 1 + x ) m , m = 0 , 1 , ,
26.3.4 m = 0 ( m + n m ) x m = 1 ( 1 x ) n + 1 , | x | < 1 .
26.3.5 ( m n ) = ( m 1 n ) + ( m 1 n 1 ) , m n 1 ,
26.3.6 ( m n ) = m n ( m 1 n 1 ) = m n + 1 n ( m n 1 ) , m n 1 ,
15: 24.6 Explicit Formulas
The identities in this section hold for n = 1 , 2 , . …
24.6.1 B 2 n = k = 2 2 n + 1 ( 1 ) k 1 k ( 2 n + 1 k ) j = 1 k 1 j 2 n ,
24.6.2 B n = 1 n + 1 k = 1 n j = 1 k ( 1 ) j j n ( n + 1 k j ) / ( n k ) ,
24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
24.6.10 E n = 1 2 n k = 1 n + 1 ( n + 1 k ) j = 0 k 1 ( 1 ) j ( 2 j + 1 ) n .
16: 10.53 Power Series
10.53.1 𝗃 n ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.2 𝗒 n ( z ) = 1 z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + ( 1 ) n + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
For 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) combine (10.47.10), (10.53.1), and (10.53.2). …
17: 4.16 Elementary Properties
Table 4.16.3: Trigonometric functions: interrelations. …
sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
sin θ a ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 a 1 ( a 2 1 ) 1 / 2 ( 1 + a 2 ) 1 / 2
cos θ ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a 1 a ( 1 + a 2 ) 1 / 2
tan θ a ( 1 a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( a 2 1 ) 1 / 2 ( a 2 1 ) 1 / 2 a 1
csc θ a 1 ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a a ( a 2 1 ) 1 / 2 ( 1 + a 2 ) 1 / 2
sec θ ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a ( a 2 1 ) 1 / 2 a a 1 ( 1 + a 2 ) 1 / 2
18: 16.18 Special Cases
The F 1 1 and F 1 2 functions introduced in Chapters 13 and 15, as well as the more general F q p functions introduced in the present chapter, are all special cases of the Meijer G -function. …
16.18.1 F q p ( a 1 , , a p b 1 , , b q ; z ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G p , q + 1 1 , p ( z ; 1 a 1 , , 1 a p 0 , 1 b 1 , , 1 b q ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G q + 1 , p p , 1 ( 1 z ; 1 , b 1 , , b q a 1 , , a p ) .
As a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
19: 16.19 Identities
16.19.1 G p , q m , n ( 1 z ; a 1 , , a p b 1 , , b q ) = G q , p n , m ( z ; 1 b 1 , , 1 b q 1 a 1 , , 1 a p ) ,
16.19.3 G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q , a 0 ) = G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
16.19.4 G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = 2 p + 1 + b 1 + + b q m n a 1 a p π m + n 1 2 ( p + q ) G 2 p , 2 q 2 m , 2 n ( 2 2 p 2 q z 2 ; 1 2 a 1 , 1 2 a 1 + 1 2 , , 1 2 a p , 1 2 a p + 1 2 1 2 b 1 , 1 2 b 1 + 1 2 , , 1 2 b q , 1 2 b q + 1 2 ) ,
16.19.5 ϑ G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ( z ; a 1 1 , a 2 , , a p b 1 , , b q ) + ( a 1 1 ) G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
16.19.6 0 1 t a 0 ( 1 t ) a 0 b q + 1 1 G p , q m , n ( z t ; a 1 , , a p b 1 , , b q ) d t = Γ ( a 0 b q + 1 ) G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q + 1 ) ,
20: 34.4 Definition: 6 j Symbol
34.4.1 { j 1 j 2 j 3 l 1 l 2 l 3 } = m r m s ( 1 ) l 1 + m 1 + l 2 + m 2 + l 3 + m 3 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ( j 1 l 2 l 3 m 1 m 2 m 3 ) ( l 1 j 2 l 3 m 1 m 2 m 3 ) ( l 1 l 2 j 3 m 1 m 2 m 3 ) ,
Except in degenerate cases the combination of the triangle inequalities for the four 3 j symbols in (34.4.1) is equivalent to the existence of a tetrahedron (possibly degenerate) with edges of lengths j 1 , j 2 , j 3 , l 1 , l 2 , l 3 ; see Figure 34.4.1. …
34.4.2 { j 1 j 2 j 3 l 1 l 2 l 3 } = Δ ( j 1 j 2 j 3 ) Δ ( j 1 l 2 l 3 ) Δ ( l 1 j 2 l 3 ) Δ ( l 1 l 2 j 3 ) s ( 1 ) s ( s + 1 ) ! ( s j 1 j 2 j 3 ) ! ( s j 1 l 2 l 3 ) ! ( s l 1 j 2 l 3 ) ! ( s l 1 l 2 j 3 ) ! 1 ( j 1 + j 2 + l 1 + l 2 s ) ! ( j 2 + j 3 + l 2 + l 3 s ) ! ( j 3 + j 1 + l 3 + l 1 s ) ! ,
34.4.3 { j 1 j 2 j 3 l 1 l 2 l 3 } = ( 1 ) j 1 + j 3 + l 1 + l 3 Δ ( j 1 j 2 j 3 ) Δ ( j 2 l 1 l 3 ) ( j 1 j 2 + l 1 + l 2 ) ! ( j 2 + j 3 + l 2 + l 3 ) ! ( j 1 + j 3 + l 1 + l 3 + 1 ) ! Δ ( j 1 l 2 l 3 ) Δ ( j 3 l 1 l 2 ) ( j 1 j 2 + j 3 ) ! ( j 2 + l 1 + l 3 ) ! ( j 1 + l 2 + l 3 + 1 ) ! ( j 3 + l 1 + l 2 + 1 ) ! F 3 4 ( j 1 + j 2 j 3 , j 2 l 1 l 3 , j 1 l 2 l 3 1 , j 3 l 1 l 2 1 j 1 + j 2 l 1 l 2 , j 2 j 3 l 2 l 3 , j 1 j 3 l 1 l 3 1 ; 1 ) ,