About the Project

【AG真人官方qee9.com】加拿大28是不是骗局局89WEE4Mn

AdvancedHelp

(0.002 seconds)

11—20 of 61 matching pages

11: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • M. M. Agrest and M. S. Maksimov (1971) Theory of Incomplete Cylindrical Functions and Their Applications. Springer-Verlag, Berlin.
  • K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther (1956) Study of nuclear structure by electromagnetic excitation with accelerated ions. Rev. Mod. Phys. 28, pp. 432–542.
  • D. E. Amos (1974) Computation of modified Bessel functions and their ratios. Math. Comp. 28 (125), pp. 239–251.
  • F. V. Andreev and A. V. Kitaev (2002) Transformations R S 4 2 ( 3 ) of the ranks 4 and algebraic solutions of the sixth Painlevé equation. Comm. Math. Phys. 228 (1), pp. 151–176.
  • 12: Bibliography J
  • L. Jacobsen, W. B. Jones, and H. Waadeland (1986) Further results on the computation of incomplete gamma functions. In Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), W. J. Thron (Ed.), Lecture Notes in Math. 1199, pp. 67–89.
  • W. B. Jones and W. J. Thron (1974) Numerical stability in evaluating continued fractions. Math. Comp. 28 (127), pp. 795–810.
  • 13: Bibliography C
  • B. C. Carlson (1985) The hypergeometric function and the R -function near their branch points. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 63–89.
  • B. C. Carlson (1999) Toward symbolic integration of elliptic integrals. J. Symbolic Comput. 28 (6), pp. 739–753.
  • M. Chellali (1988) Accélération de calcul de nombres de Bernoulli. J. Number Theory 28 (3), pp. 347–362 (French).
  • R. F. Christy and I. Duck (1961) γ rays from an extranuclear direct capture process. Nuclear Physics 24 (1), pp. 89–101.
  • E. D. Constantinides and R. J. Marhefka (1993) Efficient and accurate computation of the incomplete Airy functions. Radio Science 28 (4), pp. 441–457.
  • 14: 26.3 Lattice Paths: Binomial Coefficients
    Table 26.3.1: Binomial coefficients ( m n ) .
    m n
    8 1 8 28 56 70 56 28 8 1
    Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
    m n
    2 1 3 6 10 15 21 28 36 45
    6 1 7 28 84 210 462 924 1716 3003
    15: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2002a) Algorithm 819: AIZ, BIZ: two Fortran 77 routines for the computation of complex Airy functions. ACM Trans. Math. Software 28 (3), pp. 325–336.
  • A. Gil, J. Segura, and N. M. Temme (2002b) Algorithm 822: GIZ, HIZ: two Fortran 77 routines for the computation of complex Scorer functions. ACM Trans. Math. Software 28 (4), pp. 436–447.
  • S. G. Gindikin (1964) Analysis in homogeneous domains. Uspehi Mat. Nauk 19 (4 (118)), pp. 3–92 (Russian).
  • V. I. Gromak, I. Laine, and S. Shimomura (2002) Painlevé Differential Equations in the Complex Plane. Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin-New York.
  • 16: Staff
  • Gerhard Wolf, University of Duisberg-Essen, Chap. 28

  • Simon Ruijsenaars, University of Leeds, for Chaps. 5, 28

  • 17: Bibliography O
  • A. B. Olde Daalhuis (1998b) Hyperterminants. II. J. Comput. Appl. Math. 89 (1), pp. 87–95.
  • M. Onoe (1956) Modified quotients of cylinder functions. Math. Tables Aids Comput. 10, pp. 27–28.
  • 18: 3.4 Differentiation
    B 0 6 = 1 18 t ( 49 28 t 2 + 3 t 4 ) ,
    19: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    20: 26.2 Basic Definitions
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    11 56 28 3718 45 89134