About the Project

【杏彩体育qee9.com】福彩3d开奖视频开奖直播今天晚上ocPQm

AdvancedHelp

(0.003 seconds)

11—20 of 458 matching pages

11: 14.29 Generalizations
14.29.1 ( 1 z 2 ) d 2 w d z 2 2 z d w d z + ( ν ( ν + 1 ) μ 1 2 2 ( 1 z ) μ 2 2 2 ( 1 + z ) ) w = 0
12: 22.9 Cyclic Identities
22.9.10 d 1 , 3 ( 2 ) d 2 , 3 ( 2 ) + d 2 , 3 ( 2 ) d 3 , 3 ( 2 ) + d 3 , 3 ( 2 ) d 1 , 3 ( 2 ) = d 1 , 3 ( 4 ) d 2 , 3 ( 4 ) + d 2 , 3 ( 4 ) d 3 , 3 ( 4 ) + d 3 , 3 ( 4 ) d 1 , 3 ( 4 ) = κ ( κ + 2 ) .
22.9.11 ( d 1 , 2 ( 2 ) ) 2 d 2 , 2 ( 2 ) ± ( d 2 , 2 ( 2 ) ) 2 d 1 , 2 ( 2 ) = k ( d 1 , 2 ( 2 ) ± d 2 , 2 ( 2 ) ) ,
22.9.17 d 1 , 4 ( 2 ) d 2 , 4 ( 2 ) d 3 , 4 ( 2 ) ± d 2 , 4 ( 2 ) d 3 , 4 ( 2 ) d 4 , 4 ( 2 ) + d 3 , 4 ( 2 ) d 4 , 4 ( 2 ) d 1 , 4 ( 2 ) ± d 4 , 4 ( 2 ) d 1 , 4 ( 2 ) d 2 , 4 ( 2 ) = k ( ± d 1 , 4 ( 2 ) + d 2 , 4 ( 2 ) ± d 3 , 4 ( 2 ) + d 4 , 4 ( 2 ) ) ,
22.9.18 ( d 1 , 4 ( 2 ) ) 2 d 3 , 4 ( 2 ) ± ( d 2 , 4 ( 2 ) ) 2 d 4 , 4 ( 2 ) + ( d 3 , 4 ( 2 ) ) 2 d 1 , 4 ( 2 ) ± ( d 4 , 4 ( 2 ) ) 2 d 2 , 4 ( 2 ) = k ( d 1 , 4 ( 2 ) ± d 2 , 4 ( 2 ) + d 3 , 4 ( 2 ) ± d 4 , 4 ( 2 ) ) ,
13: 12.15 Generalized Parabolic Cylinder Functions
12.15.1 d 2 w d z 2 + ( ν + λ 1 λ 2 z λ ) w = 0
14: 17.15 Generalizations
For higher-dimensional basic hypergometric functions, see Milne (1985a, b, c, d, 1988, 1994, 1997) and Gustafson (1987).
15: 7.10 Derivatives
7.10.1 d n + 1 erf z d z n + 1 = ( 1 ) n 2 π H n ( z ) e z 2 , n = 0 , 1 , 2 , .
d f ( z ) d z = π z g ( z ) ,
d g ( z ) d z = π z f ( z ) 1 .
16: 27.1 Special Notation
d , k , m , n positive integers (unless otherwise indicated).
d | n d divides n .
( d 1 , , d n ) greatest common divisor of d 1 , , d n .
d | n , d | n sum, product taken over divisors of n .
17: 32.2 Differential Equations
32.2.7 d 2 w d z 2 = F ( z , w , d w d z ) ,
be a nonlinear second-order differential equation in which F is a rational function of w and d w / d z , and is locally analytic in z , that is, analytic except for isolated singularities in . … in which a ( z ) , b ( z ) , c ( z ) , d ( z ) , and ϕ ( z ) are locally analytic functions. … then as ϵ 0 , W ( ζ ; a , b , c , d ) satisfies P III  with z = ζ , α = a , β = b , γ = c , δ = d . … then as ϵ 0 , W ( ζ ; a , b , c , d ) satisfies P V  with z = ζ , α = a , β = b , γ = c , δ = d .
18: 17.13 Integrals
17.13.1 c d ( q x / c ; q ) ( q x / d ; q ) ( a x / c ; q ) ( b x / d ; q ) d q x = ( 1 q ) ( q ; q ) ( a b ; q ) c d ( c / d ; q ) ( d / c ; q ) ( a ; q ) ( b ; q ) ( c + d ) ( b c / d ; q ) ( a d / c ; q ) ,
17.13.2 c d ( q x / c ; q ) ( q x / d ; q ) ( x q α / c ; q ) ( x q β / d ; q ) d q x = Γ q ( α ) Γ q ( β ) Γ q ( α + β ) c d c + d ( c / d ; q ) ( d / c ; q ) ( q β c / d ; q ) ( q α d / c ; q ) .
17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β ) ,
17.13.4 0 t α 1 ( c t q α + β ; q ) ( c t ; q ) d q t = Γ q ( α ) Γ q ( β ) ( c q α ; q ) ( q 1 α / c ; q ) Γ q ( α + β ) ( c ; q ) ( q / c ; q ) .
19: 1.13 Differential Equations
where z D , a simply-connected domain, and f ( z ) , g ( z ) are analytic in D , has an infinite number of analytic solutions in D . A solution becomes unique, for example, when w and d w / d z are prescribed at a point in D . … with f ( z ) , g ( z ) , and r ( z ) analytic in D has infinitely many analytic solutions in D . … This is the Sturm-Liouville form of a second order differential equation, where denotes d d x . … where w ¨ now denotes d 2 w d t 2 , via the transformation …
20: 30.16 Methods of Computation
For d sufficiently large, construct the d × d tridiagonal matrix 𝐀 = [ A j , k ] with nonzero elements …and real eigenvalues α 1 , d , α 2 , d , , α d , d , arranged in ascending order of magnitude. …
30.16.2 α j , d + 1 α j , d ,
Let 𝐀 be the d × d matrix given by (30.16.1) if n m is even, or by (30.16.6) if n m is odd. Form the eigenvector [ e 1 , d , e 2 , d , , e d , d ] T of 𝐀 associated with the eigenvalue α p , d , p = 1 2 ( n m ) + 1 , normalized according to …