About the Project

βš½πŸ“ occupi germei od $2.85 πŸ•΅ mills πŸ•΅ - evené Pilulky πŸ“βš½MΕ―ΕΎete Si occupi germei V exist, Krátce Datovaný germei 1 Na rhode, occupi germei canada

AdvancedHelp

(0.043 seconds)

11—20 of 919 matching pages

11: 9.10 Integrals
β–Ί
9.10.8 z ⁒ w ⁑ ( z ) ⁒ d z = w ⁑ ( z ) ,
β–Ί
9.10.9 z 2 ⁒ w ⁑ ( z ) ⁒ d z = z ⁒ w ⁑ ( z ) w ⁑ ( z ) ,
β–Ί
9.10.10 z n + 3 ⁒ w ⁑ ( z ) ⁒ d z = z n + 2 ⁒ w ⁑ ( z ) ( n + 2 ) ⁒ z n + 1 ⁒ w ⁑ ( z ) + ( n + 1 ) ⁒ ( n + 2 ) ⁒ z n ⁒ w ⁑ ( z ) ⁒ d z , n = 0 , 1 , 2 , .
β–ΊFor the confluent hypergeometric function F 1 1 and the incomplete gamma function Ξ“ see §§13.1, 13.2, and 8.2(i). … β–ΊFor further integrals, including the Airy transform, see §9.11(iv), Widder (1979), Prudnikov et al. (1990, §1.8.1), Prudnikov et al. (1992a, pp. 405–413), Prudnikov et al. (1992b, §4.3.25), Vallée and Soares (2010, Chapters 3, 4).
12: Mark J. Ablowitz
β–ΊTheir similarity solutions lead to special ODEs which have the Painlevé property; i. …ODEs which do not have moveable branch point singularities. ODEs with the Painlevé property contain the well-known Painlevé equations which are special second order scalar equations; their solutions are often called Painlevé transcendents. …
13: Bibliography I
β–Ί
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ⁒ ( z ) i ⁒ J 1 ⁒ ( z ) and of Bessel functions J m ⁒ ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • β–Ί
  • L. Infeld and T. E. Hull (1951) The factorization method. Rev. Modern Phys. 23 (1), pp. 21–68.
  • β–Ί
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • β–Ί
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • β–Ί
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • 14: Sidebar 9.SB1: Supernumerary Rainbows
    β–ΊPhotograph by Dr. Roy Bishop, Physics Department, Acadia University, Nova Scotia, Canada. See Bishop (1981). ©R. L. Bishop.
    15: Karl Dilcher
    β–Ί 1954 in Wabern-Harle, Germany) is Professor in the Department of Mathematics and Statistics at Dalhousie University in Halifax, Nova Scotia, Canada. …
    16: Stephen M. Watt
    β–Ί 1959 in Montreal, Canada) is Professor of Computer Science in the David R. …
    17: 22.19 Physical Applications
    β–ΊThis formulation gives the bounded and unbounded solutions from the same formula (22.19.3), for k 1 and k 1 , respectively. … β–Ί
    Case I: V ⁑ ( x ) = 1 2 ⁒ x 2 + 1 4 ⁒ β ⁒ x 4
    β–Ί
    Case II: V ⁑ ( x ) = 1 2 ⁒ x 2 1 4 ⁒ β ⁒ x 4
    β–Ί
    Case III: V ⁑ ( x ) = 1 2 ⁒ x 2 + 1 4 ⁒ β ⁒ x 4
    β–Ί
    §22.19(iii) Nonlinear ODEs and PDEs
    18: 28.9 Zeros
    β–ΊFor real q each of the functions ce 2 ⁒ n ⁑ ( z , q ) , se 2 ⁒ n + 1 ⁑ ( z , q ) , ce 2 ⁒ n + 1 ⁑ ( z , q ) , and se 2 ⁒ n + 2 ⁑ ( z , q ) has exactly n zeros in 0 < z < 1 2 ⁒ Ο€ . …For q the zeros of ce 2 ⁒ n ⁑ ( z , q ) and se 2 ⁒ n + 1 ⁑ ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 ⁒ n ⁑ ( q 1 / 4 ⁒ ( Ο€ 2 ⁒ z ) ) , and the zeros of ce 2 ⁒ n + 1 ⁑ ( z , q ) and se 2 ⁒ n + 2 ⁑ ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 ⁒ n + 1 ⁑ ( q 1 / 4 ⁒ ( Ο€ 2 ⁒ z ) ) . …There are no zeros within the strip | ⁑ z | < 1 2 ⁒ Ο€ other than those on the real and imaginary axes. β–ΊFor further details see McLachlan (1947, pp. 234–239) and Meixner and Schäfke (1954, §§2.331, 2.8, 2.81, and 2.85).
    19: Bibliography N
    β–Ί
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • β–Ί
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter Ξ· . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • β–Ί
  • Y. Nievergelt (1995) Bisection hardly ever converges linearly. Numer. Math. 70 (1), pp. 111–118.
  • β–Ί
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • β–Ί
  • H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
  • 20: Bibliography J
    β–Ί
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • β–Ί
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • β–Ί
  • J. H. Johnson and J. M. Blair (1973) REMES2 — a Fortran program to calculate rational minimax approximations to a given function. Technical Report Technical Report AECL-4210, Atomic Energy of Canada Limited. Chalk River Nuclear Laboratories, Chalk River, Ontario.
  • β–Ί
  • A. Jonquière (1889) Note sur la série n = 1 x n / n s . Bull. Soc. Math. France 17, pp. 142–152 (French).
  • β–Ί
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).