About the Project

%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%computer%20Science%20Diploma%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD %EF%BF%BD%EF%BF%BD%EF%BF%caption%EF%BF%BD%EF%BF%BD%EF%BF%BDUYRBAfQY

AdvancedHelp

(0.023 seconds)

11—20 of 278 matching pages

11: B. L. J. Braaksma
… …  1934 in Groningen, The Netherlands) is Emeritus Professor in the Institute for Mathematics and Computer Science at the University of Groningen, The Netherlands. …
12: Bibliography P
  • V. I. Pagurova (1965) An asymptotic formula for the incomplete gamma function. Ž. Vyčisl. Mat. i Mat. Fiz. 5, pp. 118–121 (Russian).
  • E. Pairman (1919) Tables of Digamma and Trigamma Functions. In Tracts for Computers, No. 1, K. Pearson (Ed.),
  • PARI-GP (free interactive system and C library)
  • R. B. Paris (1992b) Smoothing of the Stokes phenomenon using Mellin-Barnes integrals. J. Comput. Appl. Math. 41 (1-2), pp. 117–133.
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function. J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • 13: Bernard Deconinck
    He received his Diploma in Engineering Physics from the University of Ghent, Belgium. …In addition, he has spent time at the University of Alberta, the Mathematical Sciences Research Institute in Berkeley, California, and Colorado State University. … He has worked on integrable systems, algorithms for computations with Riemann surfaces, Bose-Einstein condensates, and methods to investigate the stability of solutions of nonlinear wave equations. He is the coauthor of several Maple commands to work with Riemann surfaces and the command to compute multidimensional theta functions numerically. …
    14: Bibliography G
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • B. Gabutti (1979) On high precision methods for computing integrals involving Bessel functions. Math. Comp. 33 (147), pp. 1049–1057.
  • B. Gabutti (1980) On the generalization of a method for computing Bessel function integrals. J. Comput. Appl. Math. 6 (2), pp. 167–168.
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • GAP (website) The GAP Group, Centre for Interdisciplinary Research in Computational Algebra, University of St. Andrews, United Kingdom.
  • 15: Brian Antonishek
    Antonishek received the Bachelor of Science degree in computer science from the University of Pittsburgh, Johnstown, Pennsylvania, in 1990 and the Master of Science degree in computer science from the University of Pittsburgh, Pittsburgh, Pennsylvania, in 1996. …
    16: Annie A. M. Cuyt
    … …  1956 in Elisabethstad, Belgian Congo) is a full professor at the Department of Mathematics and Computer Science of the University of Antwerp. She received her Doctorate in Science in 1982 from the same university, summa cum laude and with the felicitations of the jury. …Her main research interest is in the area of numerical approximation theory and its applications to a diversity of problems in scientific computing. As a consequence her expertise spans a wide range of activities from pure abstract mathematics to computer arithmetic and different engineering applications. …
    17: 10.75 Tables
  • British Association for the Advancement of Science (1937) tabulates J 0 ( x ) , J 1 ( x ) , x = 0 ( .001 ) 16 ( .01 ) 25 , 10D; Y 0 ( x ) , Y 1 ( x ) , x = 0.01 ( .01 ) 25 , 8–9S or 8D. Also included are auxiliary functions to facilitate interpolation of the tables of Y 0 ( x ) , Y 1 ( x ) for small values of x , as well as auxiliary functions to compute all four functions for large values of x .

  • Bickley et al. (1952) tabulates J n ( x ) , Y n ( x ) or x n Y n ( x ) , n = 2 ( 1 ) 20 , x = 0 ( .01 or .1 ) 10 ( .1 ) 25 , 8D (for J n ( x ) ), 8S (for Y n ( x ) or x n Y n ( x ) ); J n ( x ) , Y n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 25 , 10D (for J n ( x ) ), 10S (for Y n ( x ) ).

  • Olver (1962) provides tables for the uniform asymptotic expansions given in §10.20(i), including ζ and ( 4 ζ / ( 1 x 2 ) ) 1 4 as functions of x ( = z ) and the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , D k ( ζ ) as functions of ζ . These enable J ν ( ν x ) , Y ν ( ν x ) , J ν ( ν x ) , Y ν ( ν x ) to be computed to 10S when ν 15 , except in the neighborhoods of zeros.

  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give J 0 ( x ) to 15D, J 1 ( x ) , J 2 ( x ) , Y 0 ( x ) , Y 1 ( x ) to 10D, Y 2 ( x ) to 8D, x = 0 ( .1 ) 17.5 ; Y n ( x ) ( 2 / π ) J n ( x ) ln x , n = 0 , 1 , x = 0 ( .1 ) 2 , 8D; J n ( x ) , Y n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 20 , 5D or 5S; J n ( x ) , Y n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; modulus and phase functions x M n ( x ) , θ n ( x ) x , n = 0 , 1 , 2 , 1 / x = 0 ( .01 ) 0.1 , 8D.

  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • 18: 20 Theta Functions
    Chapter 20 Theta Functions
    19: Amparo Gil
    … …  1969 in Villarrobledo, Spain) is Associate Professor in the Department of Applied Mathematics and Computer Science in the Universidad de Cantabria, Spain. …
    20: Daniel W. Lozier
    … …  1941 in Portland, Oregon) was the Group Leader of the Mathematical Software Group in the Applied and Computational Mathematics Division of NIST until his retirement in 2013. … His research interests have centered on numerical analysis, special functions, computer arithmetic, and mathematical software construction and testing. … He has served as an associate editor of Mathematics of Computation and of the NIST Journal of Research. …In 2008 he was named an Honorary Fellow of the European Society of Computational Methods in Sciences and Engineering, and in 2017 was named a Fellow of the Washington Academy of Sciences.