About the Project

%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%20Electronic%20Engineering%20Degree%20Certificate%EF%BF%BD%EF%BF%BD%EF%BF%BDWeChat%EF%BF%BD%EF%BF%BD%EF%BF%BDaptao168%EF%BF%BD%EF%BF%BD%EF%BF%BDprChff

AdvancedHelp

(0.019 seconds)

21—30 of 235 matching pages

21: Staff
  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 22: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • J. Rys, M. Dupuis, and H. F. King (1983) Computation of electron repulsion integrals using the Rys quadrature method. J. Comput. Chem. 4 (2), pp. 154–175.
  • 23: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • H. M. Nussenzveig (1992) Diffraction Effects in Semiclassical Scattering. Montroll Memorial Lecture Series in Mathematical Physics, Cambridge University Press.
  • 24: 10.75 Tables
  • Bickley et al. (1952) tabulates J n ( x ) , Y n ( x ) or x n Y n ( x ) , n = 2 ( 1 ) 20 , x = 0 ( .01 or .1 ) 10 ( .1 ) 25 , 8D (for J n ( x ) ), 8S (for Y n ( x ) or x n Y n ( x ) ); J n ( x ) , Y n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 25 , 10D (for J n ( x ) ), 10S (for Y n ( x ) ).

  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give J 0 ( x ) to 15D, J 1 ( x ) , J 2 ( x ) , Y 0 ( x ) , Y 1 ( x ) to 10D, Y 2 ( x ) to 8D, x = 0 ( .1 ) 17.5 ; Y n ( x ) ( 2 / π ) J n ( x ) ln x , n = 0 , 1 , x = 0 ( .1 ) 2 , 8D; J n ( x ) , Y n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 20 , 5D or 5S; J n ( x ) , Y n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; modulus and phase functions x M n ( x ) , θ n ( x ) x , n = 0 , 1 , 2 , 1 / x = 0 ( .01 ) 0.1 , 8D.

  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Zhang and Jin (1996, pp. 185–195) tabulates J n ( x ) , J n ( x ) , Y n ( x ) , Y n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 50 , 100 , x = 1 , 5, 10, 25, 50, 100, 9S; J n + α ( x ) , J n + α ( x ) , Y n + α ( x ) , Y n + α ( x ) , n = 0 ( 1 ) 5 , 10 , 30 , 50 , 100 , α = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5 , 10 , 50 , 8S; real and imaginary parts of J n + α ( z ) , J n + α ( z ) , Y n + α ( z ) , Y n + α ( z ) , n = 0 ( 1 ) 15 , 20 ( 10 ) 50 , 100 , α = 0 , 1 2 , z = 4 + 2 i , 20 + 10 i , 8S.

  • Olver (1960) tabulates j n , m , J n ( j n , m ) , j n , m , J n ( j n , m ) , y n , m , Y n ( y n , m ) , y n , m , Y n ( y n , m ) , n = 0 ( 1 2 ) 20 1 2 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n ; see §10.21(viii), and more fully Olver (1954).

  • 25: 24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    26: 18.39 Applications in the Physical Sciences
    In the case of a single electron, charge e and mass m e , interacting with a fixed (infinite mass) nucleus of charge + Z e at the co-ordinate origin, with the choice of SI units, V ( r ) = Z e 2 / ( 4 π ϵ 0 r ) . … The non-relativistic Schrödinger equation describing a single, bound (negative energy) electron, in an L 2 eigenstate of energy E is: … , = m e = e 2 = 4 π ϵ 0 = 1 , Mohr and Taylor (2005, Table XXX, p. 71), where the relationship of a . u . to SI units is spelled out. … Interactions between electrons, in many electron atoms, breaks this degeneracy as a function of l , but n still dominates. … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
    27: Gloria Wiersma
    Then she began working with the staff of the Physics Laboratory Office of Electronic Commerce in Scientific and Engineering Data, developing and refining the Laboratory website until her retirement in 2007. …
    28: Bibliography M
  • I. G. Macdonald (2000) Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, pp. Art. B45a, 40 pp. (electronic).
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • N. W. McLachlan (1961) Bessel Functions for Engineers. 2nd edition, Clarendon Press, Oxford.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • 29: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • H. S. Wilf and D. Zeilberger (1992b) Rational function certification of multisum/integral/“ q ” identities. Bull. Amer. Math. Soc. (N.S.) 27 (1), pp. 148–153.
  • J. Wimp (1981) Sequence Transformations and their Applications. Mathematics in Science and Engineering, Vol. 154, Academic Press Inc., New York.
  • World Combinatorics Exchange (website)
  • 30: 6.20 Approximations
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.