About the Project

%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD,%E7%8E%B0%E9%87%91%E6%A3%8B%E7%89%8C%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E5%AE%98%E7%BD%91,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80%E2%88%B6789yule.com%E3%80%91%E7%9C%9F%E4%BA%BA%E7%9C%9F%E9%92%B1%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F,%E7%BD%91%E4%B8%8A%E6%A3%8B%E7%89%8C%E8%AE%BA%E5%9D%9B,%E7%BD%91%E7%BB%9C%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E8%B5%8C%E5%8D%9A%E7%BD%91%E7%AB%99,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E7%AB%99%E2%88%B6789yule.com%E3%80%91%E7%BD%91%E5%9D%80ZDg0nAkCfB0BknED

AdvancedHelp

(0.043 seconds)

11—20 of 616 matching pages

11: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • T. H. Koornwinder (1992) Askey-Wilson Polynomials for Root Systems of Type B C . In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, pp. 189–204.
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • 12: 19.37 Tables
    Functions K ( k ) and E ( k )
    Functions F ( ϕ , k ) and E ( ϕ , k )
    Tabulated for ϕ = 0 ( 5 ) 90 , k 2 = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 1 ) 90 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). … Tabulated for ϕ = 5 ( 5 ) 80 ( 2.5 ) 90 , α 2 = 1 ( .1 ) 0.1 , 0.1 ( .1 ) 1 , k 2 = 0 ( .05 ) 0.9 ( .02 ) 1 to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). …
    13: 34.14 Tables
    §34.14 Tables
    Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Some selected 9 j symbols are also given. … 16-17; for 9 j symbols on p. …  310–332, and for the 9 j symbols on pp. …
    14: 9.4 Maclaurin Series
    9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
    9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
    15: 26.5 Lattice Paths: Catalan Numbers
    C ( n ) is the Catalan number. …(Sixty-six equivalent definitions of C ( n ) are given in Stanley (1999, pp. 219–229).) …
    26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
    26.5.4 C ( n + 1 ) = 2 ( 2 n + 1 ) n + 2 C ( n ) ,
    26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
    16: 19.36 Methods of Computation
    If (19.36.1) is used instead of its first five terms, then the factor ( 3 r ) 1 / 6 in Carlson (1995, (2.2)) is changed to ( 3 r ) 1 / 8 . For both R D and R J the factor ( r / 4 ) 1 / 6 in Carlson (1995, (2.18)) is changed to ( r / 5 ) 1 / 8 when the following polynomial of degree 7 (the same for both) is used instead of its first seven terms: … The step from n to n + 1 is an ascending Landen transformation if θ = 1 (leading ultimately to a hyperbolic case of R C ) or a descending Gauss transformation if θ = 1 (leading to a circular case of R C ). … Here R C is computed either by the duplication algorithm in Carlson (1995) or via (19.2.19). … Thompson (1997, pp. 499, 504) uses descending Landen transformations for both F ( ϕ , k ) and E ( ϕ , k ) . …
    17: 24.16 Generalizations
    For = 0 , 1 , 2 , , Bernoulli and Euler polynomials of order are defined respectively by …When x = 0 they reduce to the Bernoulli and Euler numbers of order : … For extensions of B n ( ) ( x ) to complex values of x , n , and , and also for uniform asymptotic expansions for large x and large n , see Temme (1995b) and López and Temme (1999b, 2010b). … B n ( x ) is a polynomial in x of degree n . … Generalized Bernoulli numbers and polynomials belonging to χ are defined by …
    18: 24.9 Inequalities
    24.9.1 | B 2 n | > | B 2 n ( x ) | , 1 > x > 0 ,
    24.9.2 ( 2 2 1 2 n ) | B 2 n | | B 2 n ( x ) B 2 n | , 1 x 0 .
    24.9.4 2 ( 2 n + 1 ) ! ( 2 π ) 2 n + 1 > ( 1 ) n + 1 B 2 n + 1 ( x ) > 0 , n = 2 , 3 , ,
    24.9.6 5 π n ( n π e ) 2 n > ( 1 ) n + 1 B 2 n > 4 π n ( n π e ) 2 n ,
    24.9.7 8 n π ( 4 n π e ) 2 n ( 1 + 1 12 n ) > ( 1 ) n E 2 n > 8 n π ( 4 n π e ) 2 n .
    19: 8.23 Statistical Applications
    The function B x ( a , b ) and its normalization I x ( a , b ) play a similar role in statistics in connection with the beta distribution; see Johnson et al. (1995, pp. 210–275). In queueing theory the Erlang loss function is used, which can be expressed in terms of the reciprocal of Q ( a , x ) ; see Jagerman (1974) and Cooper (1981, pp. 80, 316–319). …
    20: Software Index