About the Project

%E2%9A%BD%F0%9F%93%8F%20Koupit%20Ivermectin%20od%20%242.85%20%F0%9F%95%B5%20www.hPills.online%20%F0%9F%95%B5%20-%20Levn%C3%A9%20Pilulky%20%F0%9F%93%8F%E2%9A%BDM%C5%AF%C5%BEete%20Si%20Koupit%20Ivermectin%20V%20Mexiku%2C%20Kr%C3%A1tce%20Datovan%C3%BD%20Ivermectin%201%20Na%20Prodej%2C%20Koupit%20Ivermectin%20Kanada

AdvancedHelp

(0.081 seconds)

11—20 of 853 matching pages

11: 34.9 Graphical Method
§34.9 Graphical Method
β–ΊFor specific examples of the graphical method of representing sums involving the 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
12: 34.10 Zeros
β–ΊIn a 3 ⁒ j symbol, if the three angular momenta j 1 , j 2 , j 3 do not satisfy the triangle conditions (34.2.1), or if the projective quantum numbers do not satisfy (34.2.3), then the 3 ⁒ j symbol is zero. …Such zeros are called nontrivial zeros. β–ΊFor further information, including examples of nontrivial zeros and extensions to 9 ⁒ j symbols, see Srinivasa Rao and Rajeswari (1993, pp. 133–215, 294–295, 299–310).
13: 34.13 Methods of Computation
β–ΊMethods of computation for 3 ⁒ j and 6 ⁒ j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). β–ΊFor 9 ⁒ j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
14: 34.7 Basic Properties: 9 ⁒ j Symbol
§34.7 Basic Properties: 9 ⁒ j Symbol
β–Ί
§34.7(ii) Symmetry
β–Ί
§34.7(iv) Orthogonality
β–Ί
§34.7(vi) Sums
β–ΊIt constitutes an addition theorem for the 9 ⁒ j symbol. …
15: 34.1 Special Notation
β–Ί β–Ίβ–Ί
2 ⁒ j 1 , 2 ⁒ j 2 , 2 ⁒ j 3 , 2 ⁒ l 1 , 2 ⁒ l 2 , 2 ⁒ l 3 nonnegative integers.
β–ΊThe main functions treated in this chapter are the Wigner 3 ⁒ j , 6 ⁒ j , 9 ⁒ j symbols, respectively, … β–ΊAn often used alternative to the 3 ⁒ j symbol is the Clebsch–Gordan coefficient …For other notations for 3 ⁒ j , 6 ⁒ j , 9 ⁒ j symbols, see Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich et al. (1988, §§8.11, 9.10, 10.10).
16: 1.12 Continued Fractions
β–Ί C n is called the n th approximant or convergent to C . A n and B n are called the n th (canonical) numerator and denominator respectively. … β–Ί b 0 + a 1 b 1 + a 2 b 2 + β‹― is equivalent to b 0 + a 1 b 1 + a 2 b 2 + β‹― if there is a sequence { d n } n = 0 , d 0 = 1 ,
d n 0 , such that … β–Ίwhen p k 0 , k = 1 , 2 , 3 , . …when c k 0 , k = 1 , 2 , 3 , . …
17: 16.7 Relations to Other Functions
β–ΊFor 3 ⁒ j , 6 ⁒ j , 9 ⁒ j symbols see Chapter 34. Further representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
18: 9.4 Maclaurin Series
β–Ί
9.4.1 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
β–Ί
9.4.2 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) ,
β–Ί
9.4.3 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
β–Ί
9.4.4 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) .
19: 23 Weierstrass Elliptic and Modular
Functions
20: 10 Bessel Functions