About the Project

small x

AdvancedHelp

(0.005 seconds)

41—50 of 102 matching pages

41: 28.35 Tables
  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • Stratton et al. (1941) includes b n , b n , and the corresponding Fourier coefficients for Se n ( c , x ) and So n ( c , x ) for n = 0 or 1 ( 1 ) 4 , c = 0 ( .1 or .2 ) 4.5 . Precision is mostly 5S. Notation: c = 2 q , b n = a n + 2 q , b n = b n + 2 q , and for Se n ( c , x ) , So n ( c , x ) see §28.1.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Ince (1932) includes the first zero for ce n , se n for n = 2 ( 1 ) 5 or 6 , q = 0 ( 1 ) 10 ( 2 ) 40 ; 4D. This reference also gives zeros of the first derivatives, together with expansions for small q .

  • 42: 1.4 Calculus of One Variable
    that is, for every arbitrarily small positive constant ϵ there exists δ ( > 0 ) such that … The derivative f ( x ) of f ( x ) is defined by … For h ( x ) = f ( g ( x ) ) , … For F ( x ) = f ( x ) with f ( x ) continuous, … This definition also applies when f ( x ) is a complex function of the real variable x . …
    43: 8.18 Asymptotic Expansions of I x ( a , b )
    uniformly for x ( 0 , 1 ) and a / ( a + b ) , b / ( a + b ) [ δ , 1 δ ] , where δ again denotes an arbitrary small positive constant. …
    44: 12.1 Special Notation
    x , y real variables.
    δ arbitrary small positive constant.
    45: 11.6 Asymptotic Expansions
    11.6.3 0 z 𝐊 0 ( t ) d t 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 1 ) k + 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π δ ,
    11.6.4 0 z 𝐌 0 ( t ) d t + 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | 1 2 π δ ,
    46: 8.1 Special Notation
    x real variable.
    δ arbitrary small positive constant.
    The functions treated in this chapter are the incomplete gamma functions γ ( a , z ) , Γ ( a , z ) , γ ( a , z ) , P ( a , z ) , and Q ( a , z ) ; the incomplete beta functions B x ( a , b ) and I x ( a , b ) ; the generalized exponential integral E p ( z ) ; the generalized sine and cosine integrals si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) . Alternative notations include: Prym’s functions P z ( a ) = γ ( a , z ) , Q z ( a ) = Γ ( a , z ) , Nielsen (1906a, pp. 25–26), Batchelder (1967, p. 63); ( a , z ) ! = γ ( a + 1 , z ) , [ a , z ] ! = Γ ( a + 1 , z ) , Dingle (1973); B ( a , b , x ) = B x ( a , b ) , I ( a , b , x ) = I x ( a , b ) , Magnus et al. (1966); Si ( a , x ) Si ( 1 a , x ) , Ci ( a , x ) Ci ( 1 a , x ) , Luke (1975).
    47: 30.1 Special Notation
    x real variable. Except in §§30.7(iv), 30.11(ii), 30.13, and 30.14, 1 < x < 1 .
    δ arbitrary small positive constant.
    The main functions treated in this chapter are the eigenvalues λ n m ( γ 2 ) and the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) , 𝑃𝑠 n m ( z , γ 2 ) , 𝑄𝑠 n m ( z , γ 2 ) , and S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 . …Meixner and Schäfke (1954) use ps , qs , Ps , Qs for 𝖯𝗌 , 𝖰𝗌 , 𝑃𝑠 , 𝑄𝑠 , respectively. … Flammer (1957) and Abramowitz and Stegun (1964) use λ m n ( γ ) for λ n m ( γ 2 ) + γ 2 , R m n ( j ) ( γ , z ) for S n m ( j ) ( z , γ ) , and …
    48: 28.1 Special Notation
    m , n integers.
    x , y real variables.
    z = x + i y complex variable.
    δ arbitrary small positive number.
    49: 12.10 Uniform Asymptotic Expansions for Large Parameter
    Throughout this section the symbol δ again denotes an arbitrary small positive constant. …
    §12.10(iii) Negative a , < x < 2 a
    §12.10(iv) Negative a , 2 a < x < 2 a
    §12.10(v) Positive a , < x <
    §12.10(viii) Negative a , < x < 2 a . Expansions in Terms of Airy Functions
    50: 13.20 Uniform Asymptotic Approximations for Large μ
    uniformly with respect to x ( 0 , ) and κ [ 0 , ( 1 δ ) μ ] , where δ again denotes an arbitrary small positive constant. …