About the Project

学位验证报告怎么弄《做证微fuk7778》2yMin3Xd

AdvancedHelp

(0.002 seconds)

31—40 of 802 matching pages

31: 28.23 Expansions in Series of Bessel Functions
𝒞 μ ( 4 ) = H μ ( 2 ) ;
valid for all z when j = 1 , and for z > 0 and | cosh z | > 1 when j = 2 , 3 , 4 . …valid for all z when j = 1 , and for z > 0 and | sinh z | > 1 when j = 2 , 3 , 4 . …
28.23.13 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m + 1 ( se 2 m + 2 ( 1 2 π , h 2 ) ) 1 coth z = 0 ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h sinh z ) .
When j = 2 , 3 , 4 the series in the even-numbered equations converge for z > 0 and | cosh z | > 1 , and the series in the odd-numbered equations converge for z > 0 and | sinh z | > 1 . …
32: 28.31 Equations of Whittaker–Hill and Ince
It has been discussed in detail by Arscott (1967) for k 2 < 0 , and by Urwin and Arscott (1970) for k 2 > 0 . … Formal 2 π -periodic solutions can be constructed as Fourier series; compare §28.4: … For m 1 m 2 , …and also for all p 1 , p 2 , m 1 , m 2 , given by … All other periodic solutions behave as multiples of exp ( 1 4 ξ cos ( 2 z ) ) ( cos z ) p 2 . …
33: 14.29 Generalizations
14.29.1 ( 1 z 2 ) d 2 w d z 2 2 z d w d z + ( ν ( ν + 1 ) μ 1 2 2 ( 1 z ) μ 2 2 2 ( 1 + z ) ) w = 0
As in the case of (14.21.1), the solutions are hypergeometric functions, and (14.29.1) reduces to (14.21.1) when μ 1 = μ 2 = μ . …
34: 18.31 Bernstein–Szegő Polynomials
The Bernstein–Szegő polynomials { p n ( x ) } , n = 0 , 1 , , are orthogonal on ( 1 , 1 ) with respect to three types of weight function: ( 1 x 2 ) 1 2 ( ρ ( x ) ) 1 , ( 1 x 2 ) 1 2 ( ρ ( x ) ) 1 , ( 1 x ) 1 2 ( 1 + x ) 1 2 ( ρ ( x ) ) 1 . In consequence, p n ( cos θ ) can be given explicitly in terms of ρ ( cos θ ) and sines and cosines, provided that < 2 n in the first case, < 2 n + 2 in the second case, and < 2 n + 1 in the third case. …
35: 4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.2 tan ( a z ) = a tan z 1 + ( 1 a 2 ) tan 2 z 3 + ( 4 a 2 ) tan 2 z 5 + ( 9 a 2 ) tan 2 z 7 + , | z | < 1 2 π , a z ± 1 2 π , ± 3 2 π , .
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
4.25.5 e 2 a arctan ( 1 / z ) = 1 + 2 a z a + a 2 + 1 3 z + a 2 + 4 5 z + a 2 + 9 7 z + ,
36: 12.4 Power-Series Expansions
where the initial values are given by (12.2.6)–(12.2.9), and u 1 ( a , z ) and u 2 ( a , z ) are the even and odd solutions of (12.2.2) given by
12.4.3 u 1 ( a , z ) = e 1 4 z 2 ( 1 + ( a + 1 2 ) z 2 2 ! + ( a + 1 2 ) ( a + 5 2 ) z 4 4 ! + ) ,
12.4.4 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a + 3 2 ) z 3 3 ! + ( a + 3 2 ) ( a + 7 2 ) z 5 5 ! + ) .
12.4.5 u 1 ( a , z ) = e 1 4 z 2 ( 1 + ( a 1 2 ) z 2 2 ! + ( a 1 2 ) ( a 5 2 ) z 4 4 ! + ) ,
12.4.6 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a 3 2 ) z 3 3 ! + ( a 3 2 ) ( a 7 2 ) z 5 5 ! + ) .
37: 7.9 Continued Fractions
7.9.1 π e z 2 erfc z = z z 2 + 1 2 1 + 1 z 2 + 3 2 1 + 2 z 2 + , z > 0 ,
7.9.2 π e z 2 erfc z = 2 z 2 z 2 + 1 1 2 2 z 2 + 5 3 4 2 z 2 + 9 , z > 0 ,
7.9.3 w ( z ) = i π 1 z 1 2 z 1 z 3 2 z 2 z , z > 0 .
38: 17.14 Constant Term Identities
17.14.1 ( q ; q ) a 1 + a 2 + + a n ( q ; q ) a 1 ( q ; q ) a 2 ( q ; q ) a n =  coeff. of  x 1 0 x 2 0 x n 0  in  1 j < k n ( x j x k ; q ) a j ( q x k x j ; q ) a k .
17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
17.14.5 n = 0 q n 2 + 2 n ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 2 z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q 2 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 4 z 2 ; q 4 ) = H ( q 4 ) ( q ; q 2 ) .
39: 28.10 Integral Equations
28.10.1 2 π 0 π / 2 cos ( 2 h cos z cos t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 1 2 π , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.2 2 π 0 π / 2 cosh ( 2 h sin z sin t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 0 , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.7 2 π 0 π / 2 sin z sin t sin ( 2 h cos z cos t ) se 2 n + 2 ( t , h 2 ) d t = h B 2 2 n + 2 ( h 2 ) 2 se 2 n + 2 ( 1 2 π , h 2 ) se 2 n + 2 ( z , h 2 ) ,
28.10.8 2 π 0 π / 2 cos z cos t sinh ( 2 h sin z sin t ) se 2 n + 2 ( t , h 2 ) d t = h B 2 2 n + 2 ( h 2 ) 2 se 2 n + 2 ( 0 , h 2 ) se 2 n + 2 ( z , h 2 ) .
40: 7.8 Inequalities
7.8.2 1 x + x 2 + 2 < 𝖬 ( x ) 1 x + x 2 + ( 4 / π ) , x 0 ,
7.8.4 𝖬 ( x ) < 2 3 x + x 2 + 4 , x > 1 2 2 ,
7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
7.8.6 0 x e a t 2 d t < 1 3 a x ( 2 e a x 2 + a x 2 2 ) , a , x > 0 .
The function F ( x ) / 1 e 2 x 2 is strictly decreasing for x > 0 . …