About the Project

order filter generic online usa cheema-parma/?id=1738

AdvancedHelp

(0.051 seconds)

1—10 of 518 matching pages

1: 28.12 Definitions and Basic Properties
The introduction to the eigenvalues and the functions of general order proceeds as in §§28.2(i), 28.2(ii), and 28.2(iii), except that we now restrict ν ^ 0 , 1 ; equivalently ν n . …
§28.12(ii) Eigenfunctions me ν ( z , q )
For q = 0 , …
2: 28.2 Definitions and Basic Properties
The general solution of (28.2.16) is ν = ± ν ^ + 2 n , where n . …
§28.2(vi) Eigenfunctions
3: 16.2 Definition and Analytic Properties
§16.2(i) Generalized Hypergeometric Series
Polynomials
Note also that any partial sum of the generalized hypergeometric series can be represented as a generalized hypergeometric function via …
§16.2(v) Behavior with Respect to Parameters
4: 8.19 Generalized Exponential Integral
§8.19 Generalized Exponential Integral
§8.19(ii) Graphics
§8.19(ix) Inequalities
§8.19(xi) Further Generalizations
For higher-order generalized exponential integrals see Meijer and Baken (1987) and Milgram (1985).
5: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
§8.21(i) Definitions: General Values
§8.21(iv) Interrelations
§8.21(v) Special Values
6: 1.16 Distributions
Λ : 𝒟 ( I ) is called a distribution, or generalized function, if it is a continuous linear functional on 𝒟 ( I ) , that is, it is a linear functional and for every ϕ n ϕ in 𝒟 ( I ) , … More generally, for α : [ a , b ] [ , ] a nondecreasing function the corresponding Lebesgue–Stieltjes measure μ α (see §1.4(v)) can be considered as a distribution: … More generally, if α ( x ) is an infinitely differentiable function, then … Suppose f ( x ) is infinitely differentiable except at x 0 , where left and right derivatives of all orders exist, and … Friedman (1990) gives an overview of generalized functions and their relation to distributions. …
7: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8(i) Definition
Convergence Properties
§35.8(iv) General Properties
Confluence
8: 19.2 Definitions
§19.2(i) General Elliptic Integrals
9: Bibliography D
  • G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris (1994) Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A 50 (5), pp. 4298–4302.
  • D. Ding (2000) A simplified algorithm for the second-order sound fields. J. Acoust. Soc. Amer. 108 (6), pp. 2759–2764.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • T. M. Dunster (2013) Conical functions of purely imaginary order and argument. Proc. Roy. Soc. Edinburgh Sect. A 143 (5), pp. 929–955.
  • A. J. Durán and F. A. Grünbaum (2005) A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178 (1-2), pp. 169–190.
  • 10: Bibliography C
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990a) An algorithm for exponential integrals of real order. Computing 45 (3), pp. 269–276.
  • N. B. Christensen (1990) Optimized fast Hankel transform filters. Geophysical Prospecting 38 (5), pp. 545–568.
  • J. A. Cochran (1965) The zeros of Hankel functions as functions of their order. Numer. Math. 7 (3), pp. 238–250.
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • A. Cruz and J. Sesma (1982) Zeros of the Hankel function of real order and of its derivative. Math. Comp. 39 (160), pp. 639–645.