# Notations R

$\mathbb{R}$
real line; Common Notations and Definitions
$\Re$
real part; (1.9.2)
$r(\NVar{n})$
Schröder number; (26.6.4)
$r_{\NVar{k}}\left(\NVar{n}\right)$
number of squares; §27.13(iv)
$R^{(\NVar{\alpha})}_{\NVar{m},\NVar{n}}\left(\NVar{z}\right)$
disk polynomial; (18.37.1)
$r_{\operatorname{tp}}\left(\NVar{\epsilon},\NVar{\ell}\right)$
outer turning point for Coulomb functions; (33.14.3)
$\rho_{\operatorname{tp}}\left(\NVar{\eta},\NVar{\ell}\right)$
outer turning point for Coulomb radial functions; (33.2.2)
$R_{\NVar{-a}}\left(\NVar{b_{1}},\dots,\NVar{b_{n}};\NVar{z_{1}},\dots,\NVar{z_% {n}}\right)$ or $R_{\NVar{-a}}\left(\NVar{\mathbf{b}};\NVar{\mathbf{z}}\right)$
multivariate hypergeometric function; (19.16.9)
$R_{\NVar{mn}}^{(\NVar{j})}(\NVar{\gamma},\NVar{z})=S^{m(j)}_{n}\left(z,\gamma\right)$
alternative notation for the radial spheroidal wave function; §30.1
$R(\NVar{a};\NVar{\mathbf{b}};\NVar{\mathbf{z}})=R_{-a}\left(\mathbf{b};\mathbf% {z}\right)$
alternative notation; §19.16(ii)
$R_{\NVar{n}}\left(\NVar{x};\NVar{\gamma},\NVar{\delta},\NVar{N}\right)$
dual Hahn polynomial; Table 18.25.1
$R_{\NVar{n}}\left(\NVar{x};\NVar{\alpha},\NVar{\beta},\NVar{\gamma},\NVar{% \delta}\right)$
Racah polynomial; Table 18.25.1
$R_{\NVar{n}}\left(\NVar{x};\NVar{\alpha},\NVar{\beta},\NVar{\gamma},\NVar{% \delta}\,|\,\NVar{q}\right)$
$q$-Racah polynomial; (18.28.19)
$R_{C}\left(\NVar{x},\NVar{y}\right)$
Carlson’s combination of inverse circular and inverse hyperbolic functions; (19.2.17)
$R_{D}\left(\NVar{x},\NVar{y},\NVar{z}\right)$
elliptic integral symmetric in only two variables; (19.16.5)
$\Residue$
residue; §1.10(iii)
$R_{F}\left(\NVar{x},\NVar{y},\NVar{z}\right)$
symmetric elliptic integral of first kind; (19.16.1)
$R_{G}\left(\NVar{x},\NVar{y},\NVar{z}\right)$
symmetric elliptic integral of second kind; (19.16.2_5)
$R_{J}\left(\NVar{x},\NVar{y},\NVar{z},\NVar{p}\right)$
symmetric elliptic integral of third kind; (19.16.2)