About the Project

zonal spherical harmonics

AdvancedHelp

(0.001 seconds)

11—20 of 110 matching pages

11: 35.9 Applications
In chemistry, Wei and Eichinger (1993) expresses the probability density functions of macromolecules in terms of generalized hypergeometric functions of matrix argument, and develop asymptotic approximations for these density functions. In the nascent area of applications of zonal polynomials to the limiting probability distributions of symmetric random matrices, one of the most comprehensive accounts is Rains (1998).
12: 29.18 Mathematical Applications
(29.18.5) is the differential equation of spherical Bessel functions (§10.47(i)), and (29.18.6), (29.18.7) agree with the Lamé equation (29.2.1). …
§29.18(iii) Spherical and Ellipsoidal Harmonics
13: 10.73 Physical Applications
§10.73(ii) Spherical Bessel Functions
The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …With the spherical harmonic Y , m ( θ , ϕ ) defined as in §14.30(i), the solutions are of the form f = g ( k ρ ) Y , m ( θ , ϕ ) with g = 𝗃 , 𝗒 , 𝗁 ( 1 ) , or 𝗁 ( 2 ) , depending on the boundary conditions. Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …
14: 1.17 Integral and Series Representations of the Dirac Delta
Bessel Functions and Spherical Bessel Functions (§§10.2(ii), 10.47(ii))
1.17.14 δ ( x a ) = 2 x a π 0 t 2 𝗃 ( x t ) 𝗃 ( a t ) d t , x > 0 , a > 0 .
1.17.22 δ ( x a ) = k = 0 ( k + 1 2 ) P k ( x ) P k ( a ) .
Spherical Harmonics14.30)
1.17.25 δ ( cos θ 1 cos θ 2 ) δ ( ϕ 1 ϕ 2 ) = = 0 m = Y , m ( θ 1 , ϕ 1 ) Y , m ( θ 2 , ϕ 2 ) ¯ .
15: 10.55 Continued Fractions
§10.55 Continued Fractions
For continued fractions for 𝗃 n + 1 ( z ) / 𝗃 n ( z ) and 𝗂 n + 1 ( 1 ) ( z ) / 𝗂 n ( 1 ) ( z ) see Cuyt et al. (2008, pp. 350, 353, 362, 363, 367–369).
16: Bibliography L
  • L. Lapointe and L. Vinet (1996) Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys. 178 (2), pp. 425–452.
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • L.-W. Li, M. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan (1998a) Computations of spheroidal harmonics with complex arguments: A review with an algorithm. Phys. Rev. E 58 (5), pp. 6792–6806.
  • 17: 10.48 Graphs
    §10.48 Graphs
    See accompanying text
    Figure 10.48.5: 𝗂 0 ( 1 ) ( x ) , 𝗂 0 ( 2 ) ( x ) , 𝗄 0 ( x ) , 0 x 4 . Magnify
    See accompanying text
    Figure 10.48.6: 𝗂 1 ( 1 ) ( x ) , 𝗂 1 ( 2 ) ( x ) , 𝗄 1 ( x ) , 0 x 4 . Magnify
    See accompanying text
    Figure 10.48.7: 𝗂 5 ( 1 ) ( x ) , 𝗂 5 ( 2 ) ( x ) , 𝗄 5 ( x ) , 0 x 8 . Magnify
    18: Bibliography Z
  • Zeilberger (website) Doron Zeilberger’s Maple Packages and Programs Department of Mathematics, Rutgers University, New Jersey.
  • M. I. Žurina and L. N. Karmazina (1966) Tables and formulae for the spherical functions P 1 / 2 + i τ m ( z ) . Translated by E. L. Albasiny, Pergamon Press, Oxford.
  • 19: 10.52 Limiting Forms
    §10.52 Limiting Forms
    10.52.1 𝗃 n ( z ) , 𝗂 n ( 1 ) ( z ) z n / ( 2 n + 1 ) !! ,
    𝗁 n ( 1 ) ( z ) i n 1 z 1 e i z ,
    20: 10.50 Wronskians and Cross-Products
    §10.50 Wronskians and Cross-Products
    𝒲 { 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) } = 2 i z 2 .
    𝒲 { 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) } = ( 1 ) n + 1 z 2 ,
    𝒲 { 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) } = 𝒲 { 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) } = 1 2 π z 2 .
    Results corresponding to (10.50.3) and (10.50.4) for 𝗂 n ( 1 ) ( z ) and 𝗂 n ( 2 ) ( z ) are obtainable via (10.47.12).