About the Project

zeta function

AdvancedHelp

(0.010 seconds)

11—20 of 150 matching pages

11: 27.4 Euler Products and Dirichlet Series
The completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)): … The Riemann zeta function is the prototype of series of the form …The following examples have generating functions related to the zeta function:
27.4.5 n = 1 μ ( n ) n s = 1 ζ ( s ) , s > 1 ,
27.4.7 n = 1 λ ( n ) n s = ζ ( 2 s ) ζ ( s ) , s > 1 ,
12: 25.19 Tables
  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ζ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ζ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 13: 25.10 Zeros
    §25.10(i) Distribution
    The functional equation (25.4.1) implies ζ ( 2 n ) = 0 for n = 1 , 2 , 3 , . … …
    25.10.1 Z ( t ) exp ( i ϑ ( t ) ) ζ ( 1 2 + i t ) ,
    §25.10(ii) Riemann–Siegel Formula
    14: 25.8 Sums
    §25.8 Sums
    25.8.1 k = 2 ( ζ ( k ) 1 ) = 1 .
    25.8.2 k = 0 Γ ( s + k ) ( k + 1 ) ! ( ζ ( s + k ) 1 ) = Γ ( s 1 ) , s 1 , 0 , 1 , 2 , .
    25.8.4 k = 1 ( 1 ) k k ( ζ ( n k ) 1 ) = ln ( j = 0 n 1 Γ ( 2 e ( 2 j + 1 ) π i / n ) ) , n = 2 , 3 , 4 , .
    25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
    15: 25.4 Reflection Formulas
    §25.4 Reflection Formulas
    25.4.1 ζ ( 1 s ) = 2 ( 2 π ) s cos ( 1 2 π s ) Γ ( s ) ζ ( s ) ,
    25.4.2 ζ ( s ) = 2 ( 2 π ) s 1 sin ( 1 2 π s ) Γ ( 1 s ) ζ ( 1 s ) .
    25.4.4 ξ ( s ) = 1 2 s ( s 1 ) Γ ( 1 2 s ) π s / 2 ζ ( s ) .
    25.4.5 ( 1 ) k ζ ( k ) ( 1 s ) = 2 ( 2 π ) s m = 0 k r = 0 m ( k m ) ( m r ) ( ( c k m ) cos ( 1 2 π s ) + ( c k m ) sin ( 1 2 π s ) ) Γ ( r ) ( s ) ζ ( m r ) ( s ) ,
    16: 25.6 Integer Arguments
    §25.6(i) Function Values
    25.6.4 ζ ( 2 n ) = 0 , n = 1 , 2 , 3 , .
    §25.6(ii) Derivative Values
    25.6.11 ζ ( 0 ) = 1 2 ln ( 2 π ) .
    §25.6(iii) Recursion Formulas
    17: 25.2 Definition and Expansions
    §25.2 Definition and Expansions
    When s > 1 , …
    §25.2(ii) Other Infinite Series
    §25.2(iii) Representations by the Euler–Maclaurin Formula
    §25.2(iv) Infinite Products
    18: 25.5 Integral Representations
    §25.5 Integral Representations
    25.5.8 ζ ( s ) = 1 2 ( 1 2 s ) Γ ( s ) 0 x s 1 sinh x d x , s > 1 .
    25.5.9 ζ ( s ) = 2 s 1 Γ ( s + 1 ) 0 x s ( sinh x ) 2 d x , s > 1 .
    25.5.19 ζ ( m + s ) = ( 1 ) m 1 Γ ( s ) sin ( π s ) π Γ ( m + s ) 0 ψ ( m ) ( 1 + x ) x s d x , m = 1 , 2 , 3 , .
    §25.5(iii) Contour Integrals
    19: 25.21 Software
    §25.21(ii) Zeta Functions for Real Arguments
    §25.21(iii) Zeta Functions for Complex Arguments
    §25.21(iv) Hurwitz Zeta Function
    20: 25.16 Mathematical Applications
    §25.16 Mathematical Applications
    which is related to the Riemann zeta function by …
    §25.16(ii) Euler Sums
    For integer s ( 2 ), H ( s ) can be evaluated in terms of the zeta function: … which satisfies the reciprocity law …