About the Project

zeros of cylinder functions

AdvancedHelp

(0.003 seconds)

11—20 of 29 matching pages

11: Bibliography B
  • P. Baldwin (1985) Zeros of generalized Airy functions. Mathematika 32 (1), pp. 104–117.
  • J. S. Ball (2000) Automatic computation of zeros of Bessel functions and other special functions. SIAM J. Sci. Comput. 21 (4), pp. 1458–1464.
  • G. E. Barr (1968) A note on integrals involving parabolic cylinder functions. SIAM J. Appl. Math. 16 (1), pp. 71–74.
  • T. H. Boyer (1969) Concerning the zeros of some functions related to Bessel functions. J. Mathematical Phys. 10 (9), pp. 1729–1744.
  • N. Brazel, F. Lawless, and A. Wood (1992) Exponential asymptotics for an eigenvalue of a problem involving parabolic cylinder functions. Proc. Amer. Math. Soc. 114 (4), pp. 1025–1032.
  • 12: Bibliography O
  • F. W. J. Olver (1951) A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge Philos. Soc. 47, pp. 699–712.
  • F. W. J. Olver (1959) Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders. J. Res. Nat. Bur. Standards Sect. B 63B, pp. 131–169.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • M. Onoe (1955) Formulae and Tables, The Modified Quotients of Cylinder Functions. Technical report Technical Report UDC 517.564.3:518.25, Vol. 4, Report of the Institute of Industrial Science, University of Tokyo, Institute of Industrial Science, Chiba City, Japan.
  • M. Onoe (1956) Modified quotients of cylinder functions. Math. Tables Aids Comput. 10, pp. 27–28.
  • 13: Software Index
    Open Source With Book Commercial
    12 Parabolic Cylinder Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    14: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • A. Gil, J. Segura, and N. M. Temme (2006a) Computing the real parabolic cylinder functions U ( a , x ) , V ( a , x ) . ACM Trans. Math. Software 32 (1), pp. 70–101.
  • A. Gil, J. Segura, and N. M. Temme (2006b) Algorithm 850: Real parabolic cylinder functions U ( a , x ) , V ( a , x ) . ACM Trans. Math. Software 32 (1), pp. 102–112.
  • A. Gil, J. Segura, and N. M. Temme (2011a) Algorithm 914: parabolic cylinder function W ( a , x ) and its derivative. ACM Trans. Math. Software 38 (1), pp. Art. 6, 5.
  • A. Gil, J. Segura, and N. M. Temme (2011b) Fast and accurate computation of the Weber parabolic cylinder function W ( a , x ) . IMA J. Numer. Anal. 31 (3), pp. 1194–1216.
  • 15: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • J. A. Cochran (1965) The zeros of Hankel functions as functions of their order. Numer. Math. 7 (3), pp. 238–250.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • S. Conde and S. L. Kalla (1981) On zeros of the hypergeometric function. Serdica 7 (3), pp. 243–249.
  • 16: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • Y. Ikebe, Y. Kikuchi, and I. Fujishiro (1991) Computing zeros and orders of Bessel functions. J. Comput. Appl. Math. 38 (1-3), pp. 169–184.
  • Y. Ikebe (1975) The zeros of regular Coulomb wave functions and of their derivatives. Math. Comp. 29, pp. 878–887.
  • E. L. Ince (1932) Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 52, pp. 355–433.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • 17: Bibliography T
  • G. Taubmann (1992) Parabolic cylinder functions U ( n , x ) for natural n and positive x . Comput. Phys. Commun. 69, pp. 415–419.
  • N. M. Temme (1979a) An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives. J. Comput. Phys. 32 (2), pp. 270–279.
  • N. M. Temme (1995a) Asymptotics of zeros of incomplete gamma functions. Ann. Numer. Math. 2 (1-4), pp. 415–423.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • N. M. Temme (2000) Numerical and asymptotic aspects of parabolic cylinder functions. J. Comput. Appl. Math. 121 (1-2), pp. 221–246.
  • 18: 32.11 Asymptotic Approximations for Real Variables
    where … where … where … Here U denotes the parabolic cylinder function12.2). … Alternatively, if ν is not zero or a positive integer, then …
    19: Bibliography J
  • D. L. Jagerman (1974) Some properties of the Erlang loss function. Bell System Tech. J. 53, pp. 525–551.
  • A. J. Jerri (1982) A note on sampling expansion for a transform with parabolic cylinder kernel. Inform. Sci. 26 (2), pp. 155–158.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • D. S. Jones (2001) Asymptotics of the hypergeometric function. Math. Methods Appl. Sci. 24 (6), pp. 369–389.
  • D. S. Jones (2006) Parabolic cylinder functions of large order. J. Comput. Appl. Math. 190 (1-2), pp. 453–469.
  • 20: Bibliography F
  • B. R. Fabijonas and F. W. J. Olver (1999) On the reversion of an asymptotic expansion and the zeros of the Airy functions. SIAM Rev. 41 (4), pp. 762–773.
  • M. Faierman (1992) Generalized parabolic cylinder functions. Asymptotic Anal. 5 (6), pp. 517–531.
  • E. M. Ferreira and J. Sesma (2008) Zeros of the Macdonald function of complex order. J. Comput. Appl. Math. 211 (2), pp. 223–231.
  • H. E. Fettis, J. C. Caslin, and K. R. Cramer (1973) Complex zeros of the error function and of the complementary error function. Math. Comp. 27 (122), pp. 401–407.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.