About the Project

wave functions

AdvancedHelp

(0.003 seconds)

31—40 of 77 matching pages

31: Bibliography V
  • A. L. Van Buren, R. V. Baier, S. Hanish, and B. J. King (1972) Calculation of spheroidal wave functions. J. Acoust. Soc. Amer. 51, pp. 414–416.
  • A. L. Van Buren, B. J. King, R. V. Baier, and S. Hanish (1975) Tables of Angular Spheroidal Wave Functions, Vol. 1, Prolate, m = 0 ; Vol. 2, Oblate, m=0. Naval Res. Lab. Reports, Washington, D.C..
  • Van Buren (website) Mathieu and Spheroidal Wave Functions: Fortran Programs for their Accurate Calculation
  • 32: 30.13 Wave Equation in Prolate Spheroidal Coordinates
    §30.13 Wave Equation in Prolate Spheroidal Coordinates
    30.13.14 w 1 ( ξ ) = a 1 S n m ( 1 ) ( ξ , γ ) + b 1 S n m ( 2 ) ( ξ , γ ) .
    33: 30.3 Eigenvalues
    §30.3 Eigenvalues
    With μ = m = 0 , 1 , 2 , , the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) are solutions of Equation (30.2.1) which are bounded on ( 1 , 1 ) , or equivalently, which are of the form ( 1 x 2 ) 1 2 m g ( x ) where g ( z ) is an entire function of z . …
    §30.3(iv) Power-Series Expansion
    34: Bibliography M
  • J. W. Miles (1975) Asymptotic approximations for prolate spheroidal wave functions. Studies in Appl. Math. 54 (4), pp. 315–349.
  • H. J. W. Müller (1962) Asymptotic expansions of oblate spheroidal wave functions and their characteristic numbers. J. Reine Angew. Math. 211, pp. 33–47.
  • H. J. W. Müller (1966a) Asymptotic expansions of ellipsoidal wave functions and their characteristic numbers. Math. Nachr. 31, pp. 89–101.
  • H. J. W. Müller (1966b) Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions. Math. Nachr. 32, pp. 49–62.
  • H. J. W. Müller (1966c) On asymptotic expansions of ellipsoidal wave functions. Math. Nachr. 32, pp. 157–172.
  • 35: Bibliography S
  • M. J. Seaton and G. Peach (1962) The determination of phases of wave functions. Proc. Phys. Soc. 79 (6), pp. 1296–1297.
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • D. Slepian and H. O. Pollak (1961) Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell System Tech. J. 40, pp. 43–63.
  • D. Slepian (1964) Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43, pp. 3009–3057.
  • 36: 18.39 Applications in the Physical Sciences
    a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
    c) Spherical Radial Coulomb Wave Functions
    The radial Coulomb wave functions R n , l ( r ) , solutions of …
    d) Radial Coulomb Wave Functions Expressed in Terms of the Associated Coulomb–Laguerre OP’s
    The Coulomb–Pollaczek polynomials provide alternate representations of the positive energy Coulomb wave functions of Chapter 33. …
    37: Bibliography I
  • Y. Ikebe (1975) The zeros of regular Coulomb wave functions and of their derivatives. Math. Comp. 29, pp. 878–887.
  • 38: 31.17 Physical Applications
    More applications—including those of generalized spheroidal wave functions and confluent Heun functions in mathematical physics, astrophysics, and the two-center problem in molecular quantum mechanics—can be found in Leaver (1986) and Slavyanov and Lay (2000, Chapter 4). For application of biconfluent Heun functions in a model of an equatorially trapped Rossby wave in a shear flow in the ocean or atmosphere see Boyd and Natarov (1998).
    39: Bibliography B
  • T. A. Beu and R. I. Câmpeanu (1983a) Prolate angular spheroidal wave functions. Comput. Phys. Comm. 30 (2), pp. 187–192.
  • T. A. Beu and R. I. Câmpeanu (1983b) Prolate radial spheroidal wave functions. Comput. Phys. Comm. 30 (2), pp. 177–185.
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • C. J. Bouwkamp (1947) On spheroidal wave functions of order zero. J. Math. Phys. Mass. Inst. Tech. 26, pp. 79–92.
  • A. Burgess (1963) The determination of phases and amplitudes of wave functions. Proc. Phys. Soc. 81 (3), pp. 442–452.
  • 40: Bibliography F
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • C. Flammer (1957) Spheroidal Wave Functions. Stanford University Press, Stanford, CA.
  • C. Fröberg (1955) Numerical treatment of Coulomb wave functions. Rev. Mod. Phys. 27 (4), pp. 399–411.