About the Project

wave acoustics

AdvancedHelp

(0.001 seconds)

1—10 of 11 matching pages

1: 8.24 Physical Applications
§8.24(iii) Generalized Exponential Integral
With more general values of p , E p ( x ) supplies fundamental auxiliary functions that are used in the computation of molecular electronic integrals in quantum chemistry (Harris (2002), Shavitt (1963)), and also wave acoustics of overlapping sound beams (Ding (2000)).
2: Bibliography J
  • D. S. Jones (1986) Acoustic and Electromagnetic Waves. Oxford Science Publications, The Clarendon Press Oxford University Press, New York.
  • 3: 10.73 Physical Applications
    This equation governs problems in acoustic and electromagnetic wave propagation. … More recently, Bessel functions appear in the inverse problem in wave propagation, with applications in medicine, astronomy, and acoustic imaging. …
    4: Bibliography V
  • A. L. Van Buren, R. V. Baier, S. Hanish, and B. J. King (1972) Calculation of spheroidal wave functions. J. Acoust. Soc. Amer. 51, pp. 414–416.
  • 5: Bibliography K
  • Y. A. Kravtsov (1968) Two new asymptotic methods in the theory of wave propagation in inhomogeneous media. Sov. Phys. Acoust. 14, pp. 1–17.
  • 6: 36.14 Other Physical Applications
    Diffraction catastrophes describe the (linear) wave amplitudes that smooth the geometrical caustic singularities and decorate them with interference patterns. … Diffraction catastrophes describe the connection between ray optics and wave optics. …
    §36.14(iv) Acoustics
    Applications include the reflection of ultrasound pulses, and acoustical waveguides. …
    7: Bibliography H
  • J. Hammack, D. McCallister, N. Scheffner, and H. Segur (1995) Two-dimensional periodic waves in shallow water. II. Asymmetric waves. J. Fluid Mech. 285, pp. 95–122.
  • J. Hammack, N. Scheffner, and H. Segur (1989) Two-dimensional periodic waves in shallow water. J. Fluid Mech. 209, pp. 567–589.
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • 8: Bibliography C
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • W. C. Connett, C. Markett, and A. L. Schwartz (1993) Product formulas and convolutions for angular and radial spheroidal wave functions. Trans. Amer. Math. Soc. 338 (2), pp. 695–710.
  • A. R. Curtis (1964a) Coulomb Wave Functions. Roy. Soc. Math. Tables, Vol. 11, Cambridge University Press, Cambridge.
  • 9: Bibliography
  • R. M. Aarts and A. J. E. M. Janssen (2016) Efficient approximation of the Struve functions 𝐇 n occurring in the calculation of sound radiation quantities. The Journal of the Acoustical Society of America 140 (6), pp. 4154–4160.
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • 10: Bibliography F
  • C. Flammer (1957) Spheroidal Wave Functions. Stanford University Press, Stanford, CA.
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • C. K. Frederickson and P. L. Marston (1992) Transverse cusp diffraction catastrophes produced by the reflection of ultrasonic tone bursts from a curved surface in water. J. Acoust. Soc. Amer. 92 (5), pp. 2869–2877.
  • C. K. Frederickson and P. L. Marston (1994) Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface. J. Acoust. Soc. Amer. 95 (2), pp. 650–660.
  • C. Fröberg (1955) Numerical treatment of Coulomb wave functions. Rev. Mod. Phys. 27 (4), pp. 399–411.