About the Project

variation%20of%20real%20or%20complex%20functions

AdvancedHelp

(0.011 seconds)

21—30 of 55 matching pages

21: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • E. M. Ferreira and J. Sesma (2008) Zeros of the Macdonald function of complex order. J. Comput. Appl. Math. 211 (2), pp. 223–231.
  • H. E. Fettis, J. C. Caslin, and K. R. Cramer (1973) Complex zeros of the error function and of the complementary error function. Math. Comp. 27 (122), pp. 401–407.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 22: Bibliography G
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • G. Gasper (1981) Orthogonality of certain functions with respect to complex valued weights. Canad. J. Math. 33 (5), pp. 1261–1270.
  • W. Gautschi (1969) Algorithm 363: Complex error function. Comm. ACM 12 (11), pp. 635.
  • W. Gautschi (1970) Efficient computation of the complex error function. SIAM J. Numer. Anal. 7 (1), pp. 187–198.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • 23: 7.23 Tables
    §7.23(ii) Real Variables
    §7.23(iii) Complex Variables, z = x + i y
  • Abramowitz and Stegun (1964, Chapter 7) includes w ( z ) , x = 0 ( .1 ) 3.9 , y = 0 ( .1 ) 3 , 6D.

  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • Fettis et al. (1973) gives the first 100 zeros of erf z and w ( z ) (the table on page 406 of this reference is for w ( z ) , not for erfc z ), 11S.

  • 24: 12.11 Zeros
    §12.11(i) Distribution of Real Zeros
    If a 1 2 , then U ( a , x ) has no real zeros. If 3 2 < a < 1 2 , then U ( a , x ) has no positive real zeros. If 2 n 3 2 < a < 2 n + 1 2 , n = 1 , 2 , , then U ( a , x ) has n positive real zeros. … For further information, including associated functions, see Olver (1959).
    25: 20.11 Generalizations and Analogs
    §20.11 Generalizations and Analogs
    where a , b and | a b | < 1 . … In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). … However, in this case q is no longer regarded as an independent complex variable within the unit circle, because k is related to the variable τ = τ ( k ) of the theta functions via (20.9.2). …
    §20.11(iv) Theta Functions with Characteristics
    26: 23.9 Laurent and Other Power Series
    §23.9 Laurent and Other Power Series
    23.9.2 ( z ) = 1 z 2 + n = 2 c n z 2 n 2 , 0 < | z | < | z 0 | ,
    23.9.3 ζ ( z ) = 1 z n = 2 c n 2 n 1 z 2 n 1 , 0 < | z | < | z 0 | .
    c 2 = 1 20 g 2 ,
    For z
    27: Bibliography C
  • J. B. Campbell (1981) Bessel functions I ν ( x ) and K ν ( x ) of real order and complex argument. Comput. Phys. Comm. 24 (1), pp. 97–105.
  • B. C. Carlson (1995) Numerical computation of real or complex elliptic integrals. Numer. Algorithms 10 (1-2), pp. 13–26.
  • W. J. Cody (1993a) Algorithm 714: CELEFUNT – A portable test package for complex elementary functions. ACM Trans. Math. Software 19 (1), pp. 1–21.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • CoStLy (free C-XSC library)
  • 28: 30.9 Asymptotic Approximations and Expansions
    For uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). …
    §30.9(ii) Oblate Spheroidal Wave Functions
    For uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). …
    §30.9(iii) Other Approximations and Expansions
    The behavior of λ n m ( γ 2 ) for complex γ 2 and large | λ n m ( γ 2 ) | is investigated in Hunter and Guerrieri (1982). …
    29: 19.36 Methods of Computation
    Because U 12 may be real and negative, or even complex, care is needed to ensure x = U 12 , and similarly for y and z . … The function el2 ( x , k c , a , b ) is computed by descending Landen transformations if x is real, or by descending Gauss transformations if x is complex (Bulirsch (1965b)). Remedies for cancellation when x is real and near 0 are supplied in Midy (1975). …
    §19.36(iii) Via Theta Functions
    For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
    30: 6.20 Approximations
    §6.20(i) Approximations in Terms of Elementary Functions
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, pp. 41–42) gives Chebyshev expansions of Ein ( a x ) , Si ( a x ) , and Cin ( a x ) for 1 x 1 , a . The coefficients are given in terms of series of Bessel functions.