About the Project

value at infinity

AdvancedHelp

(0.004 seconds)

1—10 of 131 matching pages

1: 7.2 Definitions
Values at Infinity
Values at Infinity
2: 6.2 Definitions and Interrelations
Values at Infinity
3: 6.4 Analytic Continuation
Analytic continuation of the principal value of E 1 ( z ) yields a multi-valued function with branch points at z = 0 and z = . …
4: 4.23 Inverse Trigonometric Functions
Table 4.23.1: Inverse trigonometric functions: principal values at 0, ± 1 , ± .
x arcsin x arccos x arctan x arccsc x arcsec x arccot x
5: 10.9 Integral Representations
Also, ( t 2 1 ) ν 1 2 is continuous on the path, and takes its principal value at the intersection with the interval ( 1 , ) . …
6: 12.14 The Function W ( a , x )
W ( a , x ) and W ( a , x ) form a numerically satisfactory pair of solutions when < x < .
§12.14(ii) Values at z = 0 and Wronskian
These follow from the contour integrals of §12.5(ii), which are valid for general complex values of the argument z and parameter a . … Then as x
Negative a , < x <
7: 4.13 Lambert W -Function
W 0 ( z ) is a single-valued analytic function on ( , e 1 ] , real-valued when z > e 1 , and has a square root branch point at z = e 1 . …The other branches W k ( z ) are single-valued analytic functions on ( , 0 ] , have a logarithmic branch point at z = 0 , and, in the case k = ± 1 , have a square root branch point at z = e 1 0 i respectively. …
8: 1.4 Calculus of One Variable
For the functions discussed in the following DLMF chapters these two integration measures are adequate, as these special functions are analytic functions of their variables, and thus C , and well defined for all values of these variables; possible exceptions being at boundary points. …
9: 4.17 Special Values and Limits
§4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
0 0 1 0 1
π 0 1 0 1
10: 4.31 Special Values and Limits
§4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
tanh z 0 i 0 i 1
sech z 1 1 0
coth z 0 0 1