About the Project

trigonometric arguments

AdvancedHelp

(0.002 seconds)

31—40 of 68 matching pages

31: Bibliography M
  • C. S. Meijer (1932) Über die asymptotische Entwicklung von 0 i ( arg w μ ) e ν z w sinh z 𝑑 z , ( π 2 < μ < π 2 ) für große Werte von | w | und | ν | . I, II. Proc. Akad. Wet. Amsterdam 35, pp. 1170–1180, 1291–1303 (German).
  • 32: 6.1 Special Notation
    Unless otherwise noted, primes indicate derivatives with respect to the argument. The main functions treated in this chapter are the exponential integrals Ei ( x ) , E 1 ( z ) , and Ein ( z ) ; the logarithmic integral li ( x ) ; the sine integrals Si ( z ) and si ( z ) ; the cosine integrals Ci ( z ) and Cin ( z ) . …
    33: 22.19 Physical Applications
    22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) ) ,
    34: 10.40 Asymptotic Expansions for Large Argument
    §10.40 Asymptotic Expansions for Large Argument
    Products
    §10.40(ii) Error Bounds for Real Argument and Order
    §10.40(iii) Error Bounds for Complex Argument and Order
    35: 4.37 Inverse Hyperbolic Functions
    The principal values (or principal branches) of the inverse sinh , cosh , and tanh are obtained by introducing cuts in the z -plane as indicated in Figure 4.37.1(i)-(iii), and requiring the integration paths in (4.37.1)–(4.37.3) not to cross these cuts. …The principal branches are denoted by arcsinh , arccosh , arctanh respectively. … Graphs of the principal values for real arguments are given in §4.29. This section also indicates conformal mappings, and surface plots for complex arguments. … For the corresponding results for arccsch z , arcsech z , and arccoth z , use (4.37.7)–(4.37.9); compare §4.23(iv). …
    36: 14.19 Toroidal (or Ring) Functions
    14.19.2 P ν 1 2 μ ( cosh ξ ) = Γ ( 1 2 μ ) π 1 / 2 ( 1 e 2 ξ ) μ e ( ν + ( 1 / 2 ) ) ξ 𝐅 ( 1 2 μ , 1 2 + ν μ ; 1 2 μ ; 1 e 2 ξ ) , μ 1 2 , 3 2 , 5 2 , .
    37: 10.68 Modulus and Phase Functions
    ber ν x = M ν ( x ) cos θ ν ( x ) ,
    bei ν x = M ν ( x ) sin θ ν ( x ) ,
    ker ν x = N ν ( x ) cos ϕ ν ( x ) ,
    With arguments ( x ) suppressed, …
    §10.68(iii) Asymptotic Expansions for Large Argument
    38: 7.1 Special Notation
    Unless otherwise noted, primes indicate derivatives with respect to the argument. The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . Alternative notations are Q ( z ) = 1 2 erfc ( z / 2 ) , P ( z ) = Φ ( z ) = 1 2 erfc ( z / 2 ) , Erf z = 1 2 π erf z , Erfi z = e z 2 F ( z ) , C 1 ( z ) = C ( 2 / π z ) , S 1 ( z ) = S ( 2 / π z ) , C 2 ( z ) = C ( 2 z / π ) , S 2 ( z ) = S ( 2 z / π ) . …
    39: Bibliography F
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • H. E. Fettis (1976) Complex roots of sin z = a z , cos z = a z , and cosh z = a z . Math. Comp. 30 (135), pp. 541–545.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • T. Fukushima (2010) Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116 (4), pp. 687–719.
  • 40: 10.61 Definitions and Basic Properties
    §10.61(iii) Reflection Formulas for Arguments
    In general, Kelvin functions have a branch point at x = 0 and functions with arguments x e ± π i are complex. …
    §10.61(iv) Reflection Formulas for Orders
    ker ν x = cos ( ν π ) ker ν x sin ( ν π ) kei ν x ,
    kei ν x = sin ( ν π ) ker ν x + cos ( ν π ) kei ν x .