About the Project

triangular matrices

AdvancedHelp

(0.001 seconds)

21—30 of 43 matching pages

21: 28.34 Methods of Computation
  • (d)

    Solution of the matrix eigenvalue problem for each of the five infinite matrices that correspond to the linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4). See Zhang and Jin (1996, pp. 479–482) and §3.2(iv).

  • 22: Philip J. Davis
    This immediately led to discussions among some of the project members about what might be possible, and the discovery that some interactive graphics work had already been done for the NIST Matrix Market, a publicly available repository of test matrices for comparing the effectiveness of numerical linear algebra algorithms. …
    23: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    24: Bibliography F
  • P. J. Forrester and N. S. Witte (2001) Application of the τ -function theory of Painlevé equations to random matrices: PIV, PII and the GUE. Comm. Math. Phys. 219 (2), pp. 357–398.
  • P. J. Forrester and N. S. Witte (2002) Application of the τ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • 25: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • 26: 34.3 Basic Properties: 3 j Symbol
    Equations (34.3.19)–(34.3.22) are particular cases of more general results that relate rotation matrices to 3 j symbols, for which see Edmonds (1974, Chapter 4). …
    27: Bibliography D
  • B. Deconinck and M. van Hoeij (2001) Computing Riemann matrices of algebraic curves. Phys. D 152/153, pp. 28–46.
  • P. A. Deift (1998) Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, Vol. 3, New York University Courant Institute of Mathematical Sciences, New York.
  • P. Di Francesco, P. Ginsparg, and J. Zinn-Justin (1995) 2 D gravity and random matrices. Phys. Rep. 254 (1-2), pp. 1–133.
  • 28: 3.4 Differentiation
    For additional formulas involving values of 2 u and 4 u on square, triangular, and cubic grids, see Collatz (1960, Table VI, pp. 542–546). …
    29: 21.5 Modular Transformations
    Let 𝐀 , 𝐁 , 𝐂 , and 𝐃 be g × g matrices with integer elements such that …
    30: 26.15 Permutations: Matrix Notation
    The set 𝔖 n 26.13) can be identified with the set of n × n matrices of 0’s and 1’s with exactly one 1 in each row and column. …