About the Project

tangent function

AdvancedHelp

(0.006 seconds)

21—30 of 100 matching pages

21: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
tanh θ a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 ( 1 a 2 ) 1 / 2 a 1
22: 4.19 Maclaurin Series and Laurent Series
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.9 ln ( tan z z ) = n = 1 ( 1 ) n 1 2 2 n ( 2 2 n 1 1 ) B 2 n n ( 2 n ) ! z 2 n , | z | < 1 2 π .
23: 4.23 Inverse Trigonometric Functions
4.23.6 Arccot z = Arctan ( 1 / z ) .
Each is two-valued on the corresponding cuts, and each is real on the part of the real axis that remains after deleting the intersections with the corresponding cuts. …
4.23.30 z = tan w ,
24: 19.11 Addition Theorems
19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
19.11.9 tan θ = 1 / ( k tan ϕ ) .
25: 12.13 Sums
12.13.5 U ( a , x cos t + y sin t ) = e 1 4 ( x sin t y cos t ) 2 m = 0 ( a 1 2 m ) ( tan t ) m U ( m + a , x ) U ( m 1 2 , y ) , a 1 2 , 0 t 1 4 π .
26: 4.42 Solution of Triangles
4.42.3 tan A = a b = 1 cot A .
27: 4.38 Inverse Hyperbolic Functions: Further Properties
4.38.5 arctanh z = z + z 3 3 + z 5 5 + z 7 7 + , | z | 1 , z ± 1 .
4.38.7 arctanh z = z 1 z 2 ( 1 + 2 3 z 2 z 2 1 + 2 4 3 5 ( z 2 z 2 1 ) 2 + ) , ( z 2 ) < 1 2 ,
4.38.11 d d z arctanh z = 1 1 z 2 .
4.38.17 Arctanh u ± Arctanh v = Arctanh ( u ± v 1 ± u v ) ,
4.38.19 Arctanh u ± Arccoth v = Arctanh ( u v ± 1 v ± u ) = Arccoth ( v ± u u v ± 1 ) .
28: 29.5 Special Cases and Limiting Forms
29.5.5 lim k 1 𝐸𝑐 ν m ( z , k 2 ) 𝐸𝑐 ν m ( 0 , k 2 ) = lim k 1 𝐸𝑠 ν m + 1 ( z , k 2 ) 𝐸𝑠 ν m + 1 ( 0 , k 2 ) = 1 ( cosh z ) μ F ( 1 2 μ 1 2 ν , 1 2 μ + 1 2 ν + 1 2 1 2 ; tanh 2 z ) , m even,
29.5.6 lim k 1 𝐸𝑐 ν m ( z , k 2 ) d 𝐸𝑐 ν m ( z , k 2 ) / d z | z = 0 = lim k 1 𝐸𝑠 ν m + 1 ( z , k 2 ) d 𝐸𝑠 ν m + 1 ( z , k 2 ) / d z | z = 0 = tanh z ( cosh z ) μ F ( 1 2 μ 1 2 ν + 1 2 , 1 2 μ + 1 2 ν + 1 3 2 ; tanh 2 z ) , m odd,
29: 28.23 Expansions in Series of Bessel Functions
28.23.3 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = i tanh z n = ( 1 ) n ( ν + 2 n ) c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.10 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 1 ) B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
28.23.12 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 2 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h cosh z ) ,
30: 33.7 Integral Representations
33.7.3 H ( η , ρ ) = i e π η ρ + 1 ( 2 + 1 ) ! C ( η ) 0 ( exp ( i ( ρ tanh t 2 η t ) ) ( cosh t ) 2 + 2 + i ( 1 + t 2 ) exp ( ρ t + 2 η arctan t ) ) d t ,