About the Project

sums of powers

AdvancedHelp

(0.001 seconds)

21—30 of 92 matching pages

21: 7.17 Inverse Error Functions
§7.17(ii) Power Series
7.17.2 inverf x = t + 1 3 t 3 + 7 30 t 5 + 127 630 t 7 + = m = 0 a m t 2 m + 1 , | x | < 1 ,
7.17.2_5 a m + 1 = 1 2 m + 3 n = 0 m 2 n + 1 m n + 1 a n a m n , m = 0 , 1 , 2 , .
22: 2.1 Definitions and Elementary Properties
Let a s x s be a formal power series (convergent or divergent) and for each positive integer n , … means that for each n , the difference between f ( x ) and the n th partial sum on the right-hand side is O ( ( x c ) n ) as x c in 𝐗 . …
23: 20.6 Power Series
§20.6 Power Series
20.6.7 α 2 j ( τ ) = n = m = ( m 1 2 + n τ ) 2 j ,
20.6.8 β 2 j ( τ ) = n = m = ( m 1 2 + ( n 1 2 ) τ ) 2 j ,
20.6.9 γ 2 j ( τ ) = n = m = ( m + ( n 1 2 ) τ ) 2 j ,
For further information on δ 2 j see §23.9: since the double sums in (20.6.6) and (23.9.1) are the same, we have δ 2 n = c n / ( 2 n 1 ) when n 2 .
24: 5.19 Mathematical Applications
As shown in Temme (1996b, §3.4), the results given in §5.7(ii) can be used to sum infinite series of rational functions. …
S = k = 0 a k ,
Many special functions f ( z ) can be represented as a Mellin–Barnes integral, that is, an integral of a product of gamma functions, reciprocals of gamma functions, and a power of z , the integration contour being doubly-infinite and eventually parallel to the imaginary axis at both ends. …By translating the contour parallel to itself and summing the residues of the integrand, asymptotic expansions of f ( z ) for large | z | , or small | z | , can be obtained complete with an integral representation of the error term. …
25: 6.6 Power Series
§6.6 Power Series
6.6.1 Ei ( x ) = γ + ln x + n = 1 x n n ! n , x > 0 .
6.6.2 E 1 ( z ) = γ ln z n = 1 ( 1 ) n z n n ! n .
6.6.4 Ein ( z ) = n = 1 ( 1 ) n 1 z n n ! n ,
6.6.5 Si ( z ) = n = 0 ( 1 ) n z 2 n + 1 ( 2 n + 1 ) ! ( 2 n + 1 ) ,
26: 10.53 Power Series
§10.53 Power Series
10.53.1 𝗃 n ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.2 𝗒 n ( z ) = 1 z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + ( 1 ) n + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
27: 10.69 Uniform Asymptotic Expansions for Large Order
10.69.2 ber ν ( ν x ) + i bei ν ( ν x ) e ν ξ ( 2 π ν ξ ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 U k ( ξ 1 ) ν k ,
10.69.3 ker ν ( ν x ) + i kei ν ( ν x ) e ν ξ ( π 2 ν ξ ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 ( 1 ) k U k ( ξ 1 ) ν k ,
10.69.4 ber ν ( ν x ) + i bei ν ( ν x ) e ν ξ x ( ξ 2 π ν ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 V k ( ξ 1 ) ν k ,
10.69.5 ker ν ( ν x ) + i kei ν ( ν x ) e ν ξ x ( π ξ 2 ν ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 ( 1 ) k V k ( ξ 1 ) ν k ,
All fractional powers take their principal values. …
28: 33.23 Methods of Computation
The power-series expansions of §§33.6 and 33.19 converge for all finite values of the radii ρ and r , respectively, and may be used to compute the regular and irregular solutions. Cancellation errors increase with increases in ρ and | r | , and may be estimated by comparing the final sum of the series with the largest partial sum. … Thus the regular solutions can be computed from the power-series expansions (§§33.6, 33.19) for small values of the radii and then integrated in the direction of increasing values of the radii. … Noble (2004) obtains double-precision accuracy for W η , μ ( 2 ρ ) for a wide range of parameters using a combination of recurrence techniques, power-series expansions, and numerical quadrature; compare (33.2.7). …
29: 36.8 Convergent Series Expansions
Ψ K ( 𝐱 ) = 2 K + 2 n = 0 exp ( i π ( 2 n + 1 ) 2 ( K + 2 ) ) Γ ( 2 n + 1 K + 2 ) a 2 n ( 𝐱 ) , K even,
Ψ K ( 𝐱 ) = 2 K + 2 n = 0 i n cos ( π ( n ( K + 1 ) 1 ) 2 ( K + 2 ) ) Γ ( n + 1 K + 2 ) a n ( 𝐱 ) , K odd,
a n + 1 ( 𝐱 ) = i n + 1 p = 0 min ( n , K 1 ) ( p + 1 ) x p + 1 a n p ( 𝐱 ) , n = 0 , 1 , 2 , .
For multinomial power series for Ψ K ( 𝐱 ) , see Connor and Curtis (1982).
36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
30: 7.6 Series Expansions
§7.6(i) Power Series
7.6.1 erf z = 2 π n = 0 ( 1 ) n z 2 n + 1 n ! ( 2 n + 1 ) ,
7.6.2 erf z = 2 π e z 2 n = 0 2 n z 2 n + 1 1 3 ( 2 n + 1 ) ,
7.6.5 C ( z ) = cos ( 1 2 π z 2 ) n = 0 ( 1 ) n π 2 n 1 3 ( 4 n + 1 ) z 4 n + 1 + sin ( 1 2 π z 2 ) n = 0 ( 1 ) n π 2 n + 1 1 3 ( 4 n + 3 ) z 4 n + 3 .
7.6.7 S ( z ) = cos ( 1 2 π z 2 ) n = 0 ( 1 ) n π 2 n + 1 1 3 ( 4 n + 3 ) z 4 n + 3 + sin ( 1 2 π z 2 ) n = 0 ( 1 ) n π 2 n 1 3 ( 4 n + 1 ) z 4 n + 1 .