About the Project

special%20cases

AdvancedHelp

(0.002 seconds)

11—15 of 15 matching pages

11: 32.8 Rational Solutions
Special rational solutions of P III  are … Special rational solutions of P IV  are … The rational solutions when the parameters satisfy (32.8.22) are special cases of §32.10(iv). … Cases (a) and (b) are special cases of §32.10(v). … These are special cases of §32.10(vi). …
12: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
13: 5.11 Asymptotic Expansions
Wrench (1968) gives exact values of g k up to g 20 . … In the case K = 1 the factor 1 + ζ ( K ) is replaced with 4. … For the error term in (5.11.19) in the case z = x ( > 0 ) and c = 1 , see Olver (1995). …
14: 26.9 Integer Partitions: Restricted Number and Part Size
Table 26.9.1: Partitions p k ( n ) .
n k
8 0 1 5 10 15 18 20 21 22 22 22
In the present chapter m n 0 in all cases. … equivalently, partitions into at most k parts either have exactly k parts, in which case we can subtract one from each part, or they have strictly fewer than k parts. …
15: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • A. J. MacLeod (2002a) Asymptotic expansions for the zeros of certain special functions. J. Comput. Appl. Math. 145 (2), pp. 261–267.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.