About the Project

small variable

AdvancedHelp

(0.003 seconds)

11—20 of 85 matching pages

11: 28.25 Asymptotic Expansions for Large z
28.25.4 z + , π + δ ph h + z 2 π δ ,
28.25.5 z + , 2 π + δ ph h + z π δ ,
12: 10.52 Limiting Forms
13: 18.26 Wilson Class: Continued
18.26.4_1 R n ( y ( y + γ + δ + 1 ) ; γ , δ , N ) = Q y ( n ; γ , δ , N ) ,
18.26.4_2 R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) = R y ( n ( n + α + β + 1 ) ; γ , δ , α , β ) .
18.26.16 Δ y ( R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) ) Δ y ( y ( y + γ + δ + 1 ) ) = n ( n + α + β + 1 ) ( α + 1 ) ( β + δ + 1 ) ( γ + 1 ) R n 1 ( y ( y + γ + δ + 2 ) ; α + 1 , β + 1 , γ + 1 , δ ) .
18.26.20 F 1 2 ( y , y + β γ β + δ + 1 ; z ) F 1 2 ( y N , y + γ + 1 δ N ; z ) = n = 0 N ( N ) n ( γ + 1 ) n ( δ N ) n n ! R n ( y ( y + γ + δ + 1 ) ; N 1 , β , γ , δ ) z n .
18.26.21 ( 1 z ) y F 1 2 ( y N , y + γ + 1 δ N ; z ) = n = 0 N ( γ + 1 ) n ( N ) n ( δ N ) n n ! R n ( y ( y + γ + δ + 1 ) ; γ , δ , N ) z n .
14: 33.5 Limiting Forms for Small ρ , Small | η | , or Large
§33.5(i) Small ρ
§33.5(iii) Small | η |
15: 8.11 Asymptotic Approximations and Expansions
8.11.5 P ( a , z ) z a e z Γ ( 1 + a ) ( 2 π a ) 1 2 e a z ( z / a ) a , a , | ph a | π δ .
8.11.6 γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , 0 < λ < 1 , | ph a | π 2 δ .
8.11.7 Γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , λ > 1 , | ph a | 3 π 2 δ .
8.11.12 Γ ( z , z ) z z 1 e z ( π 2 z 1 2 1 3 + 2 π 24 z 1 2 4 135 z + 2 π 576 z 3 2 + 8 2835 z 2 + ) , | ph z | 2 π δ .
16: 10.17 Asymptotic Expansions for Large Argument
10.17.3 J ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k sin ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.4 Y ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.9 J ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k b 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k b 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
17: 6.1 Special Notation
x real variable.
z complex variable.
δ arbitrary small positive constant.
18: 10.40 Asymptotic Expansions for Large Argument
10.40.5 I ν ( z ) e z ( 2 π z ) 1 2 k = 0 ( 1 ) k a k ( ν ) z k ± i e ± ν π i e z ( 2 π z ) 1 2 k = 0 a k ( ν ) z k , 1 2 π + δ ± ph z 3 2 π δ .
19: 18.28 Askey–Wilson Class
18.28.20 y = 0 N R n ( q y + γ δ q y + 1 ) R m ( q y + γ δ q y + 1 ) ω y = h n δ n , m , n , m = 0 , 1 , , N ,
18.28.21 ω y = ( α q , β δ q , γ q , γ δ q ; q ) y ( q , γ δ α q , γ β q , δ q ; q ) y 1 γ δ q 2 y + 1 ( α β q ) y ,
18.28.22 h n = ( α β ) n + 1 q ( n + 1 ) 2 α β q 2 n + 1 1 ( q ; q ) n ( α q , β δ q , γ q ; q ) n ( γ α β q n , δ α q n , 1 β q n , γ δ q ; q ) ( 1 α β q n , γ δ α q , γ β q , δ q ; q ) .
18.28.23 R n ( q y + γ δ q y + 1 ; α , β , γ , δ | q ) = R y ( q n + α β q n + 1 ; γ , δ , α , β | q ) , α q , β δ q , or γ q = q N ; n , y = 0 , 1 , , N .
18.28.34 lim q 1 R n ( q y + q y + γ + δ + 1 ; q α , q β , q γ , q δ | q ) = R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) .
20: 10.30 Limiting Forms