About the Project

sine function

AdvancedHelp

(0.016 seconds)

21—30 of 297 matching pages

21: 19.10 Relations to Other Functions
22: 14.19 Toroidal (or Ring) Functions
14.19.4 P n 1 2 m ( cosh ξ ) = Γ ( n + m + 1 2 ) ( sinh ξ ) m 2 m π 1 / 2 Γ ( n m + 1 2 ) Γ ( m + 1 2 ) 0 π ( sin ϕ ) 2 m ( cosh ξ + cos ϕ sinh ξ ) n + m + ( 1 / 2 ) d ϕ ,
14.19.5 𝑸 n 1 2 m ( cosh ξ ) = Γ ( n + 1 2 ) Γ ( n + m + 1 2 ) Γ ( n m + 1 2 ) 0 cosh ( m t ) ( cosh ξ + cosh t sinh ξ ) n + ( 1 / 2 ) d t , m < n + 1 2 .
14.19.6 𝑸 1 2 μ ( cosh ξ ) + 2 n = 1 Γ ( μ + n + 1 2 ) Γ ( μ + 1 2 ) 𝑸 n 1 2 μ ( cosh ξ ) cos ( n ϕ ) = ( 1 2 π ) 1 / 2 ( sinh ξ ) μ ( cosh ξ cos ϕ ) μ + ( 1 / 2 ) , μ > 1 2 .
23: 4.15 Graphics
4.15.1 cos ( x + i y ) = sin ( x + 1 2 π + i y ) ,
24: 4.16 Elementary Properties
§4.16 Elementary Properties
Table 4.16.1: Signs of the trigonometric functions in the four quadrants.
Quadrant sin θ , csc θ cos θ , sec θ tan θ , cot θ
Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
x θ 1 2 π ± θ π ± θ 3 2 π ± θ 2 π ± θ
Table 4.16.3: Trigonometric functions: interrelations. …
sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
25: 4.37 Inverse Hyperbolic Functions
4.37.4 Arccsch z = Arcsinh ( 1 / z ) ,
Each is two-valued on the corresponding cut(s), and each is real on the part of the real axis that remains after deleting the intersections with the corresponding cuts. …
4.37.7 arccsch z = arcsinh ( 1 / z ) ,
4.37.10 arcsinh ( z ) = arcsinh z .
4.37.26 z = sinh w ,
26: 4.17 Special Values and Limits
4.17.1 lim z 0 sin z z = 1 ,
27: 28.28 Integrals, Integral Representations, and Integral Equations
28.28.26 cosh z π 2 0 2 π sin t me ν ( t , h 2 ) me ν 2 m 1 ( t , h 2 ) sinh 2 z + sin 2 t d t = ( 1 ) m + 1 i h α ν , m ( 1 ) D 0 ( ν , ν + 2 m + 1 , z ) ,
28.28.29 cosh z π 2 0 2 π sin t me ν ( t , h 2 ) me ν 2 m 1 ( t , h 2 ) sinh 2 z + sin 2 t d t = ( 1 ) m + 1 i h α ν , m ( 0 ) D 1 ( ν , ν + 2 m + 1 , z ) ,
28: 36.13 Kelvin’s Ship-Wave Pattern
36.13.5 | ϕ | = ϕ c = arcsin ( 1 3 ) = 19 .47122 .
36.13.8 z ( ρ , ϕ ) = 2 π ( ρ 1 / 3 u ( ϕ ) cos ( ρ f ~ ( ϕ ) ) Ai ( ρ 2 / 3 Δ ( ϕ ) ) ( 1 + O ( 1 / ρ ) ) + ρ 2 / 3 v ( ϕ ) sin ( ρ f ~ ( ϕ ) ) Ai ( ρ 2 / 3 Δ ( ϕ ) ) ( 1 + O ( 1 / ρ ) ) ) , ρ .
See accompanying text
Figure 36.13.1: Kelvin’s ship wave pattern, computed from the uniform asymptotic approximation (36.13.8), as a function of x = ρ cos ϕ , y = ρ sin ϕ . Magnify
29: 28.32 Mathematical Applications
§28.32 Mathematical Applications
§28.32(i) Elliptical Coordinates and an Integral Relationship
30: 20.5 Infinite Products and Related Results
20.5.1 θ 1 ( z , q ) = 2 q 1 / 4 sin z n = 1 ( 1 q 2 n ) ( 1 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.10 θ 1 ( z , q ) θ 1 ( z , q ) cot z = 4 sin ( 2 z ) n = 1 q 2 n 1 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 q 2 n 1 q 2 n sin ( 2 n z ) ,
20.5.11 θ 2 ( z , q ) θ 2 ( z , q ) + tan z = 4 sin ( 2 z ) n = 1 q 2 n 1 + 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 ( 1 ) n q 2 n 1 q 2 n sin ( 2 n z ) .
20.5.12 θ 3 ( z , q ) θ 3 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 ( 1 ) n q n 1 q 2 n sin ( 2 n z ) ,
20.5.13 θ 4 ( z , q ) θ 4 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 q n 1 q 2 n sin ( 2 n z ) .