About the Project

sigma function

AdvancedHelp

(0.005 seconds)

21—30 of 73 matching pages

21: 27.11 Asymptotic Formulas: Partial Sums
27.11.4 n x σ 1 ( n ) = π 2 12 x 2 + O ( x ln x ) .
27.11.5 n x σ α ( n ) = ζ ( α + 1 ) α + 1 x α + 1 + O ( x β ) , α > 0 , α 1 , β = max ( 1 , α ) .
22: Bibliography N
  • G. Nemes and A. B. Olde Daalhuis (2016) Uniform asymptotic expansion for the incomplete beta function. SIGMA Symmetry Integrability Geom. Methods Appl. 12, pp. 101, 5 pages.
  • 23: 19.2 Definitions
    19.2.2 r ( s , t ) = ( p 1 + p 2 s ) ( p 3 p 4 s ) s ( p 3 + p 4 s ) ( p 3 p 4 s ) s = ρ s + σ ,
    where p j is a polynomial in t while ρ and σ are rational functions of t . …
    24: 27.14 Unrestricted Partitions
    27.14.7 n p ( n ) = k = 1 n σ 1 ( k ) p ( n k ) ,
    27.14.20 τ ( n ) σ 11 ( n ) ( mod 691 ) .
    25: 28.8 Asymptotic Expansions for Large q
    §28.8(ii) Sips’ Expansions
    §28.8(iii) Goldstein’s Expansions
    Barrett’s Expansions
    The approximants are elementary functions, Airy functions, Bessel functions, and parabolic cylinder functions; compare §2.8. …
    26: 19.25 Relations to Other Functions
    19.25.40 z + 2 ω = ± σ ( z ) R F ( σ 1 2 ( z ) , σ 2 2 ( z ) , σ 3 2 ( z ) ) ,
    19.25.41 σ j ( z ) = exp ( η j z ) σ ( z + ω j ) / σ ( ω j ) , j = 1 , 2 , 3 ,
    27: 30.15 Signal Analysis
    30.15.3 τ τ sin σ ( t s ) π ( t s ) ϕ n ( s ) d s = Λ n ϕ n ( t ) .
    30.15.4 e i t ω ϕ n ( t ) d t = ( i ) n 2 π τ σ Λ n ϕ n ( τ σ ω ) χ σ ( ω ) ,
    Equations (30.15.4) and (30.15.6) show that the functions ϕ n are σ -bandlimited, that is, their Fourier transform vanishes outside the interval [ σ , σ ] . … The sequence ϕ n , n = 0 , 1 , 2 , forms an orthonormal basis in the space of σ -bandlimited functions, and, after normalization, an orthonormal basis in L 2 ( τ , τ ) . …
    30.15.9 β = 1 2 π σ σ | e i t ω f ( t ) d t | 2 d ω
    28: 19.28 Integrals of Elliptic Integrals
    19.28.1 0 1 t σ 1 R F ( 0 , t , 1 ) d t = 1 2 ( B ( σ , 1 2 ) ) 2 ,
    19.28.2 0 1 t σ 1 R G ( 0 , t , 1 ) d t = σ 4 σ + 2 ( B ( σ , 1 2 ) ) 2 ,
    19.28.3 0 1 t σ 1 ( 1 t ) R D ( 0 , t , 1 ) d t = 3 4 σ + 2 ( B ( σ , 1 2 ) ) 2 .
    19.28.4 0 1 t σ 1 ( 1 t ) c 1 R a ( b 1 , b 2 ; t , 1 ) d t = Γ ( c ) Γ ( σ ) Γ ( σ + b 2 a ) Γ ( σ + c a ) Γ ( σ + b 2 ) , c = b 1 + b 2 > 0 , σ > max ( 0 , a b 2 ) .
    29: 32.11 Asymptotic Approximations for Real Variables
    32.11.19 w ( x ) = σ 1 2 x + σ ρ ( 2 x ) 1 / 4 cos ( ψ ( x ) + θ ) + O ( x 1 ) , x + ,
    where σ , ρ ( > 0 ) , and θ are real constants, and …
    32.11.27 σ = ( 2 / π ) arcsin ( π λ ) ,
    32.11.28 B = 2 2 σ Γ 2 ( 1 2 ( 1 σ ) ) Γ ( 1 2 ( 1 + σ ) + ν ) Γ 2 ( 1 2 ( 1 + σ ) ) Γ ( 1 2 ( 1 σ ) + ν ) .
    30: 2.10 Sums and Sequences
  • (b´)

    On the circle | z | = r , the function f ( z ) g ( z ) has a finite number of singularities, and at each singularity z j , say,

    2.10.30 f ( z ) g ( z ) = O ( ( z z j ) σ j 1 ) , z z j ,

    where σ j is a positive constant.

  • 2.10.32 f ( m ) ( z ) g ( m ) ( z ) = O ( ( z z j ) σ j 1 ) ,