About the Project

shift of variable

AdvancedHelp

(0.003 seconds)

1—10 of 135 matching pages

1: 33.25 Approximations
§33.25 Approximations
2: 33.23 Methods of Computation
§33.23 Methods of Computation
3: 28.20 Definitions and Basic Properties
§28.20(vii) Shift of Variable
4: 22.4 Periods, Poles, and Zeros
Table 22.4.3: Half- or quarter-period shifts of variable for the Jacobian elliptic functions.
u
5: 26.15 Permutations: Matrix Notation
26.15.11 k = 0 n r n k ( B ) ( x k + 1 ) k = j = 1 n ( x + b j j + 1 ) .
26.15.12 k = 0 n r n k ( B ) ( x k + 1 ) k = x n ,
6: 31.11 Expansions in Series of Hypergeometric Functions
31.11.3_1 P j 5 = ( λ ) j ( 1 γ + λ ) j ( 1 + λ μ ) 2 j z λ j F 1 2 ( λ + j , 1 γ + λ + j 1 + λ μ + 2 j ; 1 z ) ,
31.11.3_2 P j 6 = ( λ μ ) 2 j ( 1 μ ) j ( γ μ ) j z μ + j F 1 2 ( μ j , 1 γ + μ j 1 λ + μ 2 j ; 1 z ) .
31.11.12 P j 5 = ( α ) j ( 1 γ + α ) j ( 1 + α β + ϵ ) 2 j z α j F 1 2 ( α + j , 1 γ + α + j 1 + α β + ϵ + 2 j ; 1 z ) ,
7: 33.2 Definitions and Basic Properties
33.2.7 H ± ( η , ρ ) = ( i ) e ( π η / 2 ) ± i σ ( η ) W i η , + 1 2 ( 2 i ρ ) ,
33.2.9 θ ( η , ρ ) = ρ η ln ( 2 ρ ) 1 2 π + σ ( η ) ,
8: 18.12 Generating Functions
18.12.2_5 F 1 2 ( γ , α + β + 1 γ α + 1 ; 1 R z 2 ) F 1 2 ( γ , α + β + 1 γ β + 1 ; 1 R + z 2 ) = n = 0 ( γ ) n ( α + β + 1 γ ) n ( α + 1 ) n ( β + 1 ) n P n ( α , β ) ( x ) z n , R = 1 2 x z + z 2 , | z | < 1 ,
18.12.3 ( 1 + z ) α β 1 F 1 2 ( 1 2 ( α + β + 1 ) , 1 2 ( α + β + 2 ) β + 1 ; 2 ( x + 1 ) z ( 1 + z ) 2 ) = n = 0 ( α + β + 1 ) n ( β + 1 ) n P n ( α , β ) ( x ) z n , | z | < 1 ,
18.12.3_5 1 + z ( 1 2 x z + z 2 ) β + 3 2 = n = 0 ( 2 β + 2 ) n ( β + 1 ) n P n ( β + 1 , β ) ( x ) z n , | z | < 1 ,
18.12.4 ( 1 2 x z + z 2 ) λ = n = 0 C n ( λ ) ( x ) z n = n = 0 ( 2 λ ) n ( λ + 1 2 ) n P n ( λ 1 2 , λ 1 2 ) ( x ) z n , | z | < 1 .
18.12.14 Γ ( α + 1 ) ( x z ) 1 2 α e z J α ( 2 x z ) = n = 0 L n ( α ) ( x ) ( α + 1 ) n z n .
9: 5.18 q -Gamma and q -Beta Functions
5.18.1 ( a ; q ) n = k = 0 n 1 ( 1 a q k ) , n = 0 , 1 , 2 , ,
5.18.2 n ! q = 1 ( 1 + q ) ( 1 + q + + q n 1 ) = ( q ; q ) n ( 1 q ) n .
5.18.3 ( a ; q ) = k = 0 ( 1 a q k ) .
5.18.4 Γ q ( z ) = ( q ; q ) ( 1 q ) 1 z / ( q z ; q ) ,
5.18.12 B q ( a , b ) = 0 1 t a 1 ( t q ; q ) ( t q b ; q ) d q t , 0 < q < 1 , a > 0 , b > 0 .
10: 18.27 q -Hahn Class
18.27.14 y = 0 p n ( q y ) p m ( q y ) ( b q ; q ) y ( a q ) y ( q ; q ) y = h n δ n , m , 0 < a < q 1 , b < q 1 ,
18.27.14_3 lim c 0 P n ( b q x ; b , a , c ; q ) = ( b ) n q n ( n + 1 ) / 2 ( q a ; q ) n ( q b ; q ) n p n ( x ; a , b ; q ) .
18.27.16 0 L n ( α ) ( x ; q ) L m ( α ) ( x ; q ) x α ( x ; q ) d x = ( q α + 1 ; q ) n ( q ; q ) n q n h 0 ( 1 ) δ n , m , α > 1 ,
18.27.17_1 h 0 ( 1 ) = ( q α ; q ) ( q ; q ) Γ ( α + 1 ) Γ ( α ) ,
18.27.20_5 lim q 1 ( q ; q ) n S n ( q 1 x 2 ( 1 q ) + 1 ; q ) ( 1 q 2 ) n / 2 = ( 1 ) n H n ( x ) .