About the Project

series of cosecants or cotangents

AdvancedHelp

(0.002 seconds)

21—30 of 70 matching pages

21: 4.13 Lambert W -Function
4.13.15 W 0 ( z ) = z π 0 π ( 1 t cot t ) 2 + t 2 z + t e t cot t csc t d t .
4.13.16 W 0 ( z ) = 1 π 0 π ln ( 1 + z sin t t e t cot t ) d t .
22: 4.40 Integrals
4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
4.40.16 arccoth x d x = x arccoth x + 1 2 ln ( x 2 1 ) , 1 < x < .
23: 4.37 Inverse Hyperbolic Functions
4.37.6 Arccoth z = Arctanh ( 1 / z ) .
4.37.9 arccoth z = arctanh ( 1 / z ) , z ± 1 .
4.37.15 arccoth ( z ) = arccoth z , z ± 1 .
For the corresponding results for arccsch z , arcsech z , and arccoth z , use (4.37.7)–(4.37.9); compare §4.23(iv). … For example, arcsech a = arccoth ( ( 1 a 2 ) 1 / 2 ) .
24: 22.11 Fourier and Hyperbolic Series
22.11.9 cs ( z , k ) π 2 K cot ζ = 2 π K n = 1 q 2 n sin ( 2 n ζ ) 1 + q 2 n ,
25: 4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
26: 4.23 Inverse Trigonometric Functions
Arctan z and Arccot z have branch points at z = ± i ; the other four functions have branch points at z = ± 1 . … The principal values of the inverse cosecant, secant, and cotangent are given by …
4.23.15 arccot ( z ) = arccot z , z ± i .
For the corresponding results for arccsc z , arcsec z , and arccot z , use (4.23.7)–(4.23.9). … For example, from the heading and last entry in the penultimate column we have arcsec a = arccot ( ( a 2 1 ) 1 / 2 ) . …
27: 10.19 Asymptotic Expansions for Large Order
J ν ( ν sech α ) e ν ( tanh α α ) ( 2 π ν tanh α ) 1 2 k = 0 U k ( coth α ) ν k ,
J ν ( ν sec β ) ( 2 π ν tan β ) 1 2 ( cos ξ k = 0 U 2 k ( i cot β ) ν 2 k i sin ξ k = 0 U 2 k + 1 ( i cot β ) ν 2 k + 1 ) ,
Y ν ( ν sec β ) ( 2 π ν tan β ) 1 2 ( sin ξ k = 0 U 2 k ( i cot β ) ν 2 k + i cos ξ k = 0 U 2 k + 1 ( i cot β ) ν 2 k + 1 ) ,
J ν ( ν sec β ) ( sin ( 2 β ) π ν ) 1 2 ( sin ξ k = 0 V 2 k ( i cot β ) ν 2 k i cos ξ k = 0 V 2 k + 1 ( i cot β ) ν 2 k + 1 ) ,
Y ν ( ν sec β ) ( sin ( 2 β ) π ν ) 1 2 ( cos ξ k = 0 V 2 k ( i cot β ) ν 2 k i sin ξ k = 0 V 2 k + 1 ( i cot β ) ν 2 k + 1 ) .
28: 5.4 Special Values and Extrema
5.4.16 ψ ( i y ) = 1 2 y + π 2 coth ( π y ) ,
5.4.18 ψ ( 1 + i y ) = 1 2 y + π 2 coth ( π y ) .
5.4.19 ψ ( p q ) = γ ln q π 2 cot ( π p q ) + 1 2 k = 1 q 1 cos ( 2 π k p q ) ln ( 2 2 cos ( 2 π k q ) ) .
29: 13.24 Series
13.24.3 exp ( 1 2 z ( coth t 1 t ) ) ( t sinh t ) 1 2 μ = s = 0 p s ( μ ) ( z ) ( t z ) s .
30: 23.12 Asymptotic Approximations
23.12.2 ζ ( z ) = π 2 4 ω 1 2 ( z 3 + 2 ω 1 π cot ( π z 2 ω 1 ) 8 ( z ω 1 π sin ( π z ω 1 ) ) q 2 + O ( q 4 ) ) ,