About the Project

scattering problems

AdvancedHelp

(0.001 seconds)

11—20 of 23 matching pages

11: 9.16 Physical Applications
In the case of the rainbow, the scattering amplitude is expressed in terms of Ai ( x ) , the analysis being similar to that given originally by Airy (1838) for the corresponding problem in optics. …
12: Bibliography C
  • J. S. Christiansen and M. E. H. Ismail (2006) A moment problem and a family of integral evaluations. Trans. Amer. Math. Soc. 358 (9), pp. 4071–4097.
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • J. N. L. Connor and D. C. Mackay (1979) Calculation of angular distributions in complex angular momentum theories of elastic scattering. Molecular Physics 37 (6), pp. 1703–1712.
  • A. G. Constantine (1963) Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 (4), pp. 1270–1285.
  • H. Cornille and A. Martin (1972) Constraints on the phase of scattering amplitudes due to positivity. Nuclear Phys. B 49, pp. 413–440.
  • 13: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    this being a matrix element of the resolvent F ( T ) = ( z T ) 1 , this being a key quantity in many parts of physics and applied math, quantum scattering theory being a simple example, see Newton (2002, Ch. 7). … which appear in the quantum theory of binding or scattering of a particle in a spherically symmetric potential V ( r ) in three dimensions, and where r [ 0 , ) . The bound states are in the negative energy discrete spectrum, and the scattering states are in the positive energy continuous spectrum, 𝝈 c = [ 0 , ) , or, said more simply, in the continuum. … … See, in particular, the overview Everitt (2005b, pp. 45–74), and the uniformly annotated listing of 51 solved Sturm–Liouville problems in Everitt (2005a, pp. 272–331), each with their limit point, or circle, boundary behaviors categorized.
    14: 7.21 Physical Applications
    These applications include astrophysics, plasma diagnostics, neutron diffraction, laser spectroscopy, and surface scattering. …
    15: Bibliography G
  • R. D. M. Garashchuk and J. C. Light (2001) Quasirandom distributed bases for bound problems. J. Chem. Phys. 114 (9), pp. 3929–3939.
  • M. Gavrila (1967) Elastic scattering of photons by a hydrogen atom. Phys. Rev. 163 (1), pp. 147–155.
  • A. G. Gibbs (1973) Problem 72-21, Laplace transforms of Airy functions. SIAM Rev. 15 (4), pp. 796–798.
  • R. G. Gordon (1969) New method for constructing wavefunctions for bound states and scattering. J. Chem. Phys. 51, pp. 14–25.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • 16: Bibliography
  • M. J. Ablowitz and P. A. Clarkson (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge.
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia (1997) High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder. J. Opt. Soc. Amer. A 14 (6), pp. 1305–1315.
  • A. R. Ahmadi and S. E. Widnall (1985) Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech 153, pp. 59–81.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • 17: Bibliography K
  • M. Kerker (1969) The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York.
  • G. A. Kolesnik (1969) An improvement of the remainder term in the divisor problem. Mat. Zametki 6, pp. 545–554 (Russian).
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin (1993) Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge.
  • V. Kourganoff (1952) Basic Methods in Transfer Problems. Radiative Equilibrium and Neutron Diffusion. Oxford University Press, Oxford.
  • S. Kowalevski (1889) Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12 (1), pp. 177–232 (French).
  • 18: Bibliography F
  • V. A. Fock (1965) Electromagnetic Diffraction and Propagation Problems. International Series of Monographs on Electromagnetic Waves, Vol. 1, Pergamon Press, Oxford.
  • K. W. Ford and J. A. Wheeler (1959a) Semiclassical description of scattering. Ann. Physics 7 (3), pp. 259–286.
  • K. W. Ford and J. A. Wheeler (1959b) Application of semiclassical scattering analysis. Ann. Physics 7 (3), pp. 287–322.
  • 19: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • H. C. van de Hulst (1957) Light Scattering by Small Particles. John Wiley and Sons. Inc., New York.
  • H. C. van de Hulst (1980) Multiple Light Scattering. Vol. 1, Academic Press, New York.
  • 20: Bibliography O
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • R. H. Ott (1985) Scattering by a parabolic cylinder—a uniform asymptotic expansion. J. Math. Phys. 26 (4), pp. 854–860.