About the Project

restricted%20integer%20partitions

AdvancedHelp

(0.004 seconds)

11—20 of 619 matching pages

11: 8 Incomplete Gamma and Related
Functions
12: 28 Mathieu Functions and Hill’s Equation
13: 27.15 Chinese Remainder Theorem
For example, suppose a lengthy calculation involves many 10-digit integers. Most of the calculation can be done with five-digit integers as follows. …Their product m has 20 digits, twice the number of digits in the data. By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
14: 15.7 Continued Fractions
15: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 16: 23 Weierstrass Elliptic and Modular
    Functions
    17: 26.15 Permutations: Matrix Notation
    26.15.2 inv ( σ ) = a g h a k ,
    where the sum is over 1 g < k n and n h > 1 . … A permutation with restricted position specifies a subset B { 1 , 2 , , n } × { 1 , 2 , , n } . …
    26.15.3 R ( x , B ) = j = 0 n r j ( B ) x j .
    26.15.6 N ( x , B ) = k = 0 n N k ( B ) x k ,
    18: 11.6 Asymptotic Expansions
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
    11.6.3 0 z 𝐊 0 ( t ) d t 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 1 ) k + 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π δ ,
    11.6.4 0 z 𝐌 0 ( t ) d t + 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | 1 2 π δ ,
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    19: 10.44 Sums
    10.44.1 𝒵 ν ( λ z ) = λ ± ν k = 0 ( λ 2 1 ) k ( 1 2 z ) k k ! 𝒵 ν ± k ( z ) , | λ 2 1 | < 1 .
    If 𝒵 = I and the upper signs are taken, then the restriction on λ is unnecessary. …
    10.44.3 𝒵 ν ( u ± v ) = k = ( ± 1 ) k 𝒵 ν + k ( u ) I k ( v ) , | v | < | u | .
    The restriction | v | < | u | is unnecessary when 𝒵 = I and ν is an integer. …
    10.44.6 K n ( z ) = n ! ( 1 2 z ) n 2 k = 0 n 1 ( 1 ) k ( 1 2 z ) k I k ( z ) k ! ( n k ) + ( 1 ) n 1 ( ln ( 1 2 z ) ψ ( n + 1 ) ) I n ( z ) + ( 1 ) n k = 1 ( n + 2 k ) I n + 2 k ( z ) k ( n + k ) ,
    20: 5.11 Asymptotic Expansions
    5.11.2 ψ ( z ) ln z 1 2 z k = 1 B 2 k 2 k z 2 k .
    5.11.5 g k = 2 ( 1 2 ) k a 2 k ,
    5.11.6 a 0 a k + 1 2 a 1 a k 1 + 1 3 a 2 a k 2 + + 1 k + 1 a k a 0 = 1 k a k 1 , k 1 .
    Wrench (1968) gives exact values of g k up to g 20 . …
    5.11.8 Ln Γ ( z + h ) ( z + h 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 2 ( 1 ) k B k ( h ) k ( k 1 ) z k 1 ,