About the Project

relation to eigenfunctions

AdvancedHelp

(0.003 seconds)

11—15 of 15 matching pages

11: Bibliography T
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1958) Eigenfunction Expansions Associated with Second Order Differential Equations, Part 2, Partial Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1962a) Eigenfunction expansions associated with second-order differential equations. Part I. Second edition, Clarendon Press, Oxford.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • C. A. Tracy and H. Widom (1997) On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes. Phys. A 244 (1-4), pp. 402–413.
  • 12: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • R. Roy (2017) Elliptic and modular functions from Gauss to Dedekind to Hecke. Cambridge University Press, Cambridge.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 13: 33.22 Particle Scattering and Atomic and Molecular Spectra
    Positive-energy functions correspond to processes such as Rutherford scattering and Coulomb excitation of nuclei (Alder et al. (1956)), and atomic photo-ionization and electron-ion collisions (Bethe and Salpeter (1977)). … The solutions to this equation are closely related to the Coulomb functions; see Greiner et al. (1985). … The WKBJ approximations of §33.23(vii) may also be used to estimate the penetrability. … Examples of applications to noninteger and/or complex variables are as follows. …
  • Eigenstates using complex-rotated coordinates r r e i θ , so that resonances have square-integrable eigenfunctions. See for example Halley et al. (1993).

  • 14: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • A. Khare, A. Lakshminarayan, and U. Sukhatme (2003) Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys. 44 (4), pp. 1822–1841.
  • S. Koizumi (1976) Theta relations and projective normality of Abelian varieties. Amer. J. Math. 98 (4), pp. 865–889.
  • T. H. Koornwinder (2007b) The structure relation for Askey-Wilson polynomials. J. Comput. Appl. Math. 207 (2), pp. 214–226.
  • K. H. Kwon, L. L. Littlejohn, and G. J. Yoon (2006) Construction of differential operators having Bochner-Krall orthogonal polynomials as eigenfunctions. J. Math. Anal. Appl. 324 (1), pp. 285–303.
  • 15: 30.14 Wave Equation in Oblate Spheroidal Coordinates
    Oblate spheroidal coordinates ξ , η , ϕ are related to Cartesian coordinates x , y , z by … The wave equation (30.13.7), transformed to oblate spheroidal coordinates ( ξ , η , ϕ ) , admits solutions of the form (30.13.8), where w 1 satisfies the differential equation …Equation (30.14.7) can be transformed to equation (30.2.1) by the substitution z = ± i ξ . … Moreover, the solution w has to be bounded along the z -axis: this requires w 2 ( η ) to be bounded when 1 < η < 1 . … The corresponding eigenfunctions are then given by (30.13.8), (30.14.8), (30.13.13), (30.13.12), with b 1 = b 2 = 0 . …