About the Project

relation to associated Legendre functions

AdvancedHelp

(0.016 seconds)

21—28 of 28 matching pages

21: Bibliography C
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.
  • H. S. Cohl and R. S. Costas-Santos (2020) Multi-Integral Representations for Associated Legendre and Ferrers Functions. Symmetry 12 (10).
  • H. S. Cohl (2010) Derivatives with respect to the degree and order of associated Legendre functions for | z | > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21 (7-8), pp. 581–588.
  • H. S. Cohl (2011) On parameter differentiation for integral representations of associated Legendre functions. SIGMA Symmetry Integrability Geom. Methods Appl. 7, pp. Paper 050, 16.
  • 22: Bille C. Carlson
     2013) was Professor Emeritus in the Department of Mathematics and Associate of the Ames Laboratory (U. … This symmetry led to the development of symmetric elliptic integrals, which are free from the transformations of modulus and amplitude that complicate the Legendre theory. …Also, the homogeneity of the R -function has led to a new type of mean value for several variables, accompanied by various inequalities. … In Symmetry in c, d, n of Jacobian elliptic functions (2004) he found a previously hidden symmetry in relations between Jacobian elliptic functions, which can now take a form that remains valid when the letters c, d, and n are permuted. This invariance usually replaces sets of twelve equations by sets of three equations and applies also to the relation between the first symmetric elliptic integral and the Jacobian functions. …
    23: 14.8 Behavior at Singularities
    §14.8(i) x 1 or x 1 +
    As x 1 , …In the next three relations μ > 0 . … The behavior of 𝖯 ν μ ( x ) and 𝖰 ν μ ( x ) as x 1 + follows from the above results and the connection formulas (14.9.8) and (14.9.10). …
    24: 18.30 Associated OP’s
    Associated polynomials and the related corecursive polynomials appear in Ismail (2009, §§2.3, 2.6, and 2.10), where the relationship of OP’s to continued fractions is made evident. …
    §18.30(i) Associated Jacobi Polynomials
    §18.30(ii) Associated Legendre Polynomials
    Defining associated orthogonal polynomials and their relationship to their corecursive counterparts is particularly simple via use of the recursion relations for the monic, rather than via those for the traditional polynomials. … More generally, the k th corecursive monic polynomials (defined with the initialization of (18.30.28) followed by the c = k recurrence of (18.30.27)) are related to the ( k + 1 ) st monic associated polynomials by …
    25: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • O. Vallée and M. Soares (2010) Airy Functions and Applications to Physics. Second edition, Imperial College Press, London.
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • N. Virchenko and I. Fedotova (2001) Generalized Associated Legendre Functions and their Applications. World Scientific Publishing Co. Inc., Singapore.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • 26: Software Index
  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • Software Associated with Books.

    An increasing number of published books have included digital media containing software described in the book. Often, the collection of software covers a fairly broad area. Such software is typically developed by the book author. While it is not professionally packaged, it often provides a useful tool for readers to experiment with the concepts discussed in the book. The software itself is typically not formally supported by its authors.

  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • Computer Physics Communications Program Library

    Software associated with papers published in the journal Computer Physics Communications.

  • Guide to Available Mathematical Software

    A cross index of mathematical software in use at NIST.

  • 27: Bibliography
  • V. S. Adamchik and H. M. Srivastava (1998) Some series of the zeta and related functions. Analysis (Munich) 18 (2), pp. 131–144.
  • J. C. Adams and P. N. Swarztrauber (1997) SPHEREPACK 2.0: A Model Development Facility. NCAR Technical Note Technical Report TN-436-STR, National Center for Atmospheric Research.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • R. Askey and J. Wimp (1984) Associated Laguerre and Hermite polynomials. Proc. Roy. Soc. Edinburgh 96A, pp. 15–37.
  • 28: Bibliography O
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • F. W. J. Olver and J. M. Smith (1983) Associated Legendre functions on the cut. J. Comput. Phys. 51 (3), pp. 502–518.
  • F. W. J. Olver (Ed.) (1960) Bessel Functions. Part III: Zeros and Associated Values. Royal Society Mathematical Tables, Volume 7, Cambridge University Press, Cambridge-New York.
  • F. W. J. Olver (1965) On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 225–243.
  • F. W. J. Olver (1975b) Legendre functions with both parameters large. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 175–185.