About the Project

relation to Legendre elliptic integrals

AdvancedHelp

(0.012 seconds)

31—40 of 40 matching pages

31: Bibliography H
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • H. Hancock (1958) Elliptic Integrals. Dover Publications Inc., New York.
  • J. R. Herndon (1961a) Algorithm 55: Complete elliptic integral of the first kind. Comm. ACM 4 (4), pp. 180.
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • 32: Bibliography B
  • S. Bielski (2013) Orthogonality relations for the associated Legendre functions of imaginary order. Integral Transforms Spec. Funct. 24 (4), pp. 331–337.
  • R. Bulirsch (1969a) An extension of the Bartky-transformation to incomplete elliptic integrals of the third kind. Numer. Math. 13 (3), pp. 266–284.
  • R. Bulirsch (1969b) Numerical calculation of elliptic integrals and elliptic functions. III. Numer. Math. 13 (4), pp. 305–315.
  • R. Bulirsch (1965b) Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7 (1), pp. 78–90.
  • P. J. Bushell (1987) On a generalization of Barton’s integral and related integrals of complete elliptic integrals. Math. Proc. Cambridge Philos. Soc. 101 (1), pp. 1–5.
  • 33: Bibliography R
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • L. Robin (1957) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I. Gauthier-Villars, Paris.
  • L. Robin (1958) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II. Gauthier-Villars, Paris.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • R. Roy (2017) Elliptic and modular functions from Gauss to Dedekind to Hecke. Cambridge University Press, Cambridge.
  • 34: 29.6 Fourier Series
    With ϕ = 1 2 π am ( z , k ) , as in (29.2.5), we have … In addition, if H satisfies (29.6.2), then (29.6.3) applies. … Consequently, 𝐸𝑐 ν 2 m ( z , k 2 ) reduces to a Lamé polynomial; compare §§29.12(i) and 29.15(i). … Here dn ( z , k ) is as in §22.2, and …
    35: Bibliography
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • G. D. Anderson and M. K. Vamanamurthy (1985) Inequalities for elliptic integrals. Publ. Inst. Math. (Beograd) (N.S.) 37(51), pp. 61–63.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • 36: 29.12 Definitions
    §29.12(i) Elliptic-Function Form
    There are eight types of Lamé polynomials, defined as follows: …These functions are polynomials in sn ( z , k ) , cn ( z , k ) , and dn ( z , k ) . … The superscript m on the left-hand sides of (29.12.1)–(29.12.8) agrees with the number of z -zeros of each Lamé polynomial in the interval ( 0 , K ) , while n m is the number of z -zeros in the open line segment from K to K + i K . … In the fourth column the variable z and modulus k of the Jacobian elliptic functions have been suppressed, and P ( sn 2 ) denotes a polynomial of degree n in sn 2 ( z , k ) (different for each type). …
    37: Bibliography Z
  • F. A. Zafiropoulos, T. N. Grapsa, O. Ragos, and M. N. Vrahatis (1996) On the Computation of Zeros of Bessel and Bessel-related Functions. In Proceedings of the Sixth International Colloquium on Differential Equations (Plovdiv, Bulgaria, 1995), D. Bainov (Ed.), Utrecht, pp. 409–416.
  • D. Zagier (1989) The Dilogarithm Function in Geometry and Number Theory. In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.), Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
  • D. G. Zill and B. C. Carlson (1970) Symmetric elliptic integrals of the third kind. Math. Comp. 24 (109), pp. 199–214.
  • M. I. Žurina and L. N. Karmazina (1964) Tables of the Legendre functions P 1 / 2 + i τ ( x ) . Part I. Translated by D. E. Brown. Mathematical Tables Series, Vol. 22, Pergamon Press, Oxford.
  • M. I. Žurina and L. N. Karmazina (1965) Tables of the Legendre functions P 1 / 2 + i τ ( x ) . Part II. Translated by Prasenjit Basu. Mathematical Tables Series, Vol. 38. A Pergamon Press Book, The Macmillan Co., New York.
  • 38: 15.9 Relations to Other Functions
    §15.9 Relations to Other Functions
    Legendre
    Meixner
    §15.9(iv) Associated Legendre Functions; Ferrers Functions
    §15.9(v) Complete Elliptic Integrals
    39: Bibliography L
  • G. Labahn and M. Mutrie (1997) Reduction of Elliptic Integrals to Legendre Normal Form. Technical report Technical Report 97-21, Department of Computer Science, University of Waterloo, Waterloo, Ontario.
  • A. M. Legendre (1825) Traité des fonctions elliptiques et des intégrales Eulériennes. Huzard-Courcier, Paris.
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • Y. L. Luke (1968) Approximations for elliptic integrals. Math. Comp. 22 (103), pp. 627–634.
  • Y. L. Luke (1970) Further approximations for elliptic integrals. Math. Comp. 24 (109), pp. 191–198.
  • 40: Bibliography F
  • H. E. Fettis (1970) On the reciprocal modulus relation for elliptic integrals. SIAM J. Math. Anal. 1 (4), pp. 524–526.
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • A. Fletcher (1948) Guide to tables of elliptic functions. Math. Tables and Other Aids to Computation 3 (24), pp. 229–281.
  • C. H. Franke (1965) Numerical evaluation of the elliptic integral of the third kind. Math. Comp. 19 (91), pp. 494–496.
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.