About the Project

relation to Fuchsian equation

AdvancedHelp

(0.002 seconds)

11—20 of 920 matching pages

11: 6.11 Relations to Other Functions
§6.11 Relations to Other Functions
Incomplete Gamma Function
Confluent Hypergeometric Function
6.11.2 E 1 ( z ) = e z U ( 1 , 1 , z ) ,
12: 9 Airy and Related Functions
Chapter 9 Airy and Related Functions
13: 25 Zeta and Related Functions
Chapter 25 Zeta and Related Functions
14: Ranjan Roy
Roy has published many papers on differential equations, fluid mechanics, special functions, Fuchsian groups, and the history of mathematics. …He also authored another two advanced mathematics books: Sources in the development of mathematics (Roy, 2011), Elliptic and modular functions from Gauss to Dedekind to Hecke (Roy, 2017). …
15: 14 Legendre and Related Functions
Chapter 14 Legendre and Related Functions
16: 19.10 Relations to Other Functions
§19.10 Relations to Other Functions
§19.10(i) Theta and Elliptic Functions
For relations of Legendre’s integrals to theta functions, Jacobian functions, and Weierstrass functions, see §§20.9(i), 22.15(ii), and 23.6(iv), respectively. …
§19.10(ii) Elementary Functions
For relations to the Gudermannian function gd ( x ) and its inverse gd 1 ( x ) 4.23(viii)), see (19.6.8) and …
17: 25.17 Physical Applications
§25.17 Physical Applications
This relates to a suggestion of Hilbert and Pólya that the zeros are eigenvalues of some operator, and the Riemann hypothesis is true if that operator is Hermitian. … Quantum field theory often encounters formally divergent sums that need to be evaluated by a process of regularization: for example, the energy of the electromagnetic vacuum in a confined space (Casimir–Polder effect). It has been found possible to perform such regularizations by equating the divergent sums to zeta functions and associated functions (Elizalde (1995)).
18: 25.13 Periodic Zeta Function
§25.13 Periodic Zeta Function
The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real:
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
Also, …
25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
19: 11 Struve and Related Functions
Chapter 11 Struve and Related Functions
20: 13.18 Relations to Other Functions
§13.18 Relations to Other Functions
§13.18(i) Elementary Functions
§13.18(iv) Parabolic Cylinder Functions
§13.18(v) Orthogonal Polynomials
Laguerre Polynomials