About the Project

relation to Bessel functions

AdvancedHelp

(0.025 seconds)

11—20 of 71 matching pages

11: 12.14 The Function W ( a , x )
Bessel Functions
12: Bibliography B
  • T. H. Boyer (1969) Concerning the zeros of some functions related to Bessel functions. J. Mathematical Phys. 10 (9), pp. 1729–1744.
  • 13: 35.9 Applications
    These references all use results related to the integral formulas (35.4.7) and (35.5.8). …
    14: 10.21 Zeros
    The functions ρ ν ( t ) and σ ν ( t ) are related to the inverses of the phase functions θ ν ( x ) and ϕ ν ( x ) defined in §10.18(i): if ν 0 , then …
    ϕ ν ( y ν , m ) = m π , m = 1 , 2 , .
    15: Bibliography L
  • L. Lorch and M. E. Muldoon (2008) Monotonic sequences related to zeros of Bessel functions. Numer. Algorithms 49 (1-4), pp. 221–233.
  • 16: 3.5 Quadrature
    17: Frank W. J. Olver
    Olver joined NIST in 1961 after having been recruited by Milton Abramowitz to be the author of the Chapter “Bessel Functions of Integer Order” in the Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, a publication which went on to become the most widely distributed and most highly cited publication in NIST’s history. … , Bessel functions, hypergeometric functions, Legendre functions). … In April 2011, NIST co-organized a conference on “Special Functions in the 21st Century: Theory & Application” which was dedicated to Olver. …
  • 18: 14 Legendre and Related Functions
    Chapter 14 Legendre and Related Functions
    19: 13.9 Zeros
    When a < 0 and b > 0 let ϕ r , r = 1 , 2 , 3 , , be the positive zeros of M ( a , b , x ) arranged in increasing order of magnitude, and let j b 1 , r be the r th positive zero of the Bessel function J b 1 ( x ) 10.21(i)). …as a with r fixed. …
    20: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.