About the Project

relation%20to%20Lam%C3%A9%20functions

AdvancedHelp

(0.007 seconds)

21—30 of 1012 matching pages

21: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
§26.4(i) Definitions
It is also the number of k -dimensional lattice paths from ( 0 , 0 , , 0 ) to ( n 1 , n 2 , , n k ) . For k = 0 , 1 , the multinomial coefficient is defined to be 1 . … (The empty set is considered to have one permutation consisting of no cycles.) …
§26.4(iii) Recurrence Relation
22: 6.16 Mathematical Applications
Hence, if x is fixed and n , then S n ( x ) 1 4 π , 0 , or 1 4 π according as 0 < x < π , x = 0 , or π < x < 0 ; compare (6.2.14). … Hence if x = π / ( 2 n ) and n , then the limiting value of S n ( x ) overshoots 1 4 π by approximately 18%. … If we assume Riemann’s hypothesis that all nonreal zeros of ζ ( s ) have real part of 1 2 25.10(i)), then …where π ( x ) is the number of primes less than or equal to x . …
23: 22.16 Related Functions
§22.16 Related Functions
Relation to Elliptic Integrals
Relation to Theta Functions
Relation to the Elliptic Integral E ( ϕ , k )
Definition
24: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 25: 25 Zeta and Related Functions
    Chapter 25 Zeta and Related Functions
    26: Publications
    DLMF Related Publications
  • B. V. Saunders and Q. Wang (1999) Using Numerical Grid Generation to Facilitate 3D Visualization of Complicated Mathematical Functions, Technical Report NISTIR 6413 (November 1999), National Institute of Standards and Technology. PDF
  • B. V. Saunders and Q. Wang (2000) From 2D to 3D: Numerical Grid Generation and the Visualization of Complex Surfaces, Proceedings of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations, Whistler, British Columbia, Canada, September 25-28, 2000. PDF
  • B. V. Saunders and Q. Wang (2006) From B-Spline Mesh Generation to Effective Visualizations for the NIST Digital Library of Mathematical Functions, in Curve and Surface Design, Proceedings of the Sixth International Conference on Curves and Surfaces, Avignon, France June 29–July 5, 2006, pp. 235–243. PDF
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF
  • 27: 14 Legendre and Related Functions
    Chapter 14 Legendre and Related Functions
    28: 17 q-Hypergeometric and Related Functions
    Chapter 17 q -Hypergeometric and Related Functions
    29: 19.10 Relations to Other Functions
    §19.10 Relations to Other Functions
    §19.10(i) Theta and Elliptic Functions
    For relations of Legendre’s integrals to theta functions, Jacobian functions, and Weierstrass functions, see §§20.9(i), 22.15(ii), and 23.6(iv), respectively. …
    §19.10(ii) Elementary Functions
    For relations to the Gudermannian function gd ( x ) and its inverse gd 1 ( x ) 4.23(viii)), see (19.6.8) and …
    30: 12.14 The Function W ( a , x )
    §12.14 The Function W ( a , x )
    where α n ( a ) and β n ( a ) satisfy the recursion relations
    §12.14(vii) Relations to Other Functions
    Bessel Functions
    Confluent Hypergeometric Functions