relation to logarithmic integral
(0.006 seconds)
1—10 of 78 matching pages
1: 6.2 Definitions and Interrelations
2: 6.16 Mathematical Applications
…
►If we assume Riemann’s hypothesis that all nonreal zeros of have real part of (§25.10(i)), then
…
3: 6.11 Relations to Other Functions
…
►
6.11.2
…
4: 25.12 Polylogarithms
…
►The special case is the Riemann zeta function: .
►
Integral Representation
… ►Further properties include …and … ►In terms of polylogarithms …5: 8.19 Generalized Exponential Integral
§8.19 Generalized Exponential Integral
►§8.19(i) Definition and Integral Representations
… ►§8.19(v) Recurrence Relation and Derivatives
… ►§8.19(vi) Relation to Confluent Hypergeometric Function
… ►§8.19(x) Integrals
…6: 7.5 Interrelations
7: 7.18 Repeated Integrals of the Complementary Error Function
§7.18 Repeated Integrals of the Complementary Error Function
… ►Hermite Polynomials
… ►Confluent Hypergeometric Functions
… ►Parabolic Cylinder Functions
… ►Probability Functions
…8: 12.7 Relations to Other Functions
§12.7 Relations to Other Functions
►§12.7(i) Hermite Polynomials
… ►§12.7(ii) Error Functions, Dawson’s Integral, and Probability Function
… ►§12.7(iii) Modified Bessel Functions
… ►§12.7(iv) Confluent Hypergeometric Functions
…9: 19.10 Relations to Other Functions
§19.10 Relations to Other Functions
►§19.10(i) Theta and Elliptic Functions
►For relations of Legendre’s integrals to theta functions, Jacobian functions, and Weierstrass functions, see §§20.9(i), 22.15(ii), and 23.6(iv), respectively. … ►§19.10(ii) Elementary Functions
… ►In each case when , the quantity multiplying supplies the asymptotic behavior of the left-hand side as the left-hand side tends to 0. …10: 15.17 Mathematical Applications
…
►This topic is treated in §§15.10 and 15.11.
►The logarithmic derivatives of some hypergeometric functions for which quadratic transformations exist (§15.8(iii)) are solutions of Painlevé equations.
…
►