About the Project

reduced residue system

AdvancedHelp

(0.001 seconds)

31—40 of 160 matching pages

31: 12.19 Tables
  • Miller (1955) includes W ( a , x ) , W ( a , x ) , and reduced derivatives for a = 10 ( 1 ) 10 , x = 0 ( .1 ) 10 , 8D or 8S. Modulus and phase functions, and also other auxiliary functions are tabulated.

  • 32: 25.11 Hurwitz Zeta Function
    ζ ( s , a ) has a meromorphic continuation in the s -plane, its only singularity in being a simple pole at s = 1 with residue 1 . … When a = 1 2 , (25.11.10) reduces to (25.8.3); compare (25.11.11). … When a = 1 , (25.11.35) reduces to (25.2.3). …
    33: 19.3 Graphics
    See accompanying text
    Figure 19.3.3: F ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . If sin 2 ϕ = 1 ( k 2 ), then the function reduces to K ( k ) , becoming infinite when k 2 = 1 . … Magnify 3D Help
    See accompanying text
    Figure 19.3.4: E ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . If sin 2 ϕ = 1 ( k 2 ), then the function reduces to E ( k ) , with value 1 at k 2 = 1 . … Magnify 3D Help
    See accompanying text
    Figure 19.3.5: Π ( α 2 , k ) as a function of k 2 and α 2 for 2 k 2 < 1 , 2 α 2 2 . …If α 2 = 0 , then it reduces to K ( k ) . … Magnify 3D Help
    See accompanying text
    Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . …If sin 2 ϕ = 1 ( > k 2 ), then the function reduces to Π ( 2 , k ) with Cauchy principal value K ( k ) Π ( 1 2 k 2 , k ) , which tends to as k 2 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then by (19.7.4) it reduces to Π ( 2 / k 2 , 1 / k ) / k , k 2 2 , with Cauchy principal value ( K ( 1 / k ) Π ( 1 2 , 1 / k ) ) / k , 1 < k 2 < 2 , by (19.6.5). … Magnify 3D Help
    34: 33.22 Particle Scattering and Atomic and Molecular Spectra
    With e denoting here the elementary charge, the Coulomb potential between two point particles with charges Z 1 e , Z 2 e and masses m 1 , m 2 separated by a distance s is V ( s ) = Z 1 Z 2 e 2 / ( 4 π ε 0 s ) = Z 1 Z 2 α c / s , where Z j are atomic numbers, ε 0 is the electric constant, α is the fine structure constant, and is the reduced Planck’s constant. The reduced mass is m = m 1 m 2 / ( m 1 + m 2 ) , and at energy of relative motion E with relative orbital angular momentum , the Schrödinger equation for the radial wave function w ( s ) is given by … For Z 1 Z 2 = 1 and m = m e , the electron mass, the scaling factors in (33.22.5) reduce to the Bohr radius, a 0 = / ( m e c α ) , and to a multiple of the Rydberg constant, …
    35: Alexander A. Its
    Current research areas of Its are mathematical physics, special functions, and integrable systems. …
    36: Vadim B. Kuznetsov
    Kuznetsov published papers on special functions and orthogonal polynomials, the quantum scattering method, integrable discrete many-body systems, separation of variables, Bäcklund transformation techniques, and integrability in classical and quantum mechanics. …
    37: Wolter Groenevelt
    Groenevelt’s research interests is in special functions and orthogonal polynomials and their relations with representation theory and interacting particle systems. …
    38: 8.23 Statistical Applications
    §8.23 Statistical Applications
    39: 30.2 Differential Equations
    If μ 2 = 1 4 , Equation (30.2.2) reduces to the Mathieu equation; see (28.2.1). …
    40: 29.6 Fourier Series
    When ν 2 n , where n is a nonnegative integer, it follows from §2.9(i) that for any value of H the system (29.6.4)–(29.6.6) has a unique recessive solution A 0 , A 2 , A 4 , ; furthermore … Consequently, 𝐸𝑐 ν 2 m ( z , k 2 ) reduces to a Lamé polynomial; compare §§29.12(i) and 29.15(i). …