About the Project

reciprocal-modulus transformation

AdvancedHelp

(0.002 seconds)

31—40 of 169 matching pages

31: 15.19 Methods of Computation
For z it is always possible to apply one of the linear transformations in §15.8(i) in such a way that the hypergeometric function is expressed in terms of hypergeometric functions with an argument in the interval [ 0 , 1 2 ] . For z it is possible to use the linear transformations in such a way that the new arguments lie within the unit circle, except when z = e ± π i / 3 . This is because the linear transformations map the pair { e π i / 3 , e π i / 3 } onto itself. … When z > 1 2 it is better to begin with one of the linear transformations (15.8.4), (15.8.7), or (15.8.8). … …
32: Bibliography W
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • D. V. Widder (1979) The Airy transform. Amer. Math. Monthly 86 (4), pp. 271–277.
  • D. V. Widder (1941) The Laplace Transform. Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, NJ.
  • J. Wimp (1964) A class of integral transforms. Proc. Edinburgh Math. Soc. (2) 14, pp. 33–40.
  • 33: 20.10 Integrals
    §20.10(i) Mellin Transforms with respect to the Lattice Parameter
    20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
    §20.10(ii) Laplace Transforms with respect to the Lattice Parameter
    34: 29.21 Tables
  • Arscott and Khabaza (1962) tabulates the coefficients of the polynomials P in Table 29.12.1 (normalized so that the numerically largest coefficient is unity, i.e. monic polynomials), and the corresponding eigenvalues h for k 2 = 0.1 ( .1 ) 0.9 , n = 1 ( 1 ) 30 . Equations from §29.6 can be used to transform to the normalization adopted in this chapter. Precision is 6S.

  • 35: Bruce R. Miller
    There, he carried out research in non-linear dynamics and celestial mechanics, developing a specialized computer algebra system for high-order Lie transformations. …
    36: 9.10 Integrals
    §9.10(v) Laplace Transforms
    For Laplace transforms of products of Airy functions see Shawagfeh (1992).
    §9.10(vi) Mellin Transform
    §9.10(vii) Stieltjes Transforms
    §9.10(ix) Compendia
    37: 2.4 Contour Integrals
    Then … For examples and extensions (including uniformity and loop integrals) see Olver (1997b, Chapter 4), Wong (1989, Chapter 1), and Temme (1985).
    §2.4(ii) Inverse Laplace Transforms
    Then the Laplace transformFor examples see Olver (1997b, pp. 315–320). …
    38: 19.22 Quadratic Transformations
    §19.22 Quadratic Transformations
    Bartky’s Transformation
    Descending Gauss transformations include, as special cases, transformations of complete integrals into complete integrals; ascending Landen transformations do not. …
    39: 23.15 Definitions
    Also 𝒜 denotes a bilinear transformation on τ , given by
    23.15.3 𝒜 τ = a τ + b c τ + d ,
    The set of all bilinear transformations of this form is denoted by SL ( 2 , ) (Serre (1973, p. 77)). …
    23.15.5 f ( 𝒜 τ ) = c 𝒜 ( c τ + d ) f ( τ ) , τ > 0 ,
    40: Guide to Searching the DLMF
    Table 1: Query Examples
    Query Matching records contain
    "Fourier transform" and series both the phrase “Fourier transform” and the word “series”.
    Fourier (transform or series) at least one of “Fourier transform” or “Fourier series”.
    1/(2pi) and "Fourier transform" both 1 / ( 2 π ) and the phrase “Fourier transform”.