About the Project

real part

AdvancedHelp

(0.009 seconds)

11—20 of 249 matching pages

11: 20.10 Integrals
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
Let s , , and β be constants such that s > 0 , > 0 , and | β | + | β | . …
12: 28.25 Asymptotic Expansions for Large z
§28.25 Asymptotic Expansions for Large z
28.25.4 z + , π + δ ph h + z 2 π δ ,
28.25.5 z + , 2 π + δ ph h + z π δ ,
13: 14.25 Integral Representations
14.25.1 P ν μ ( z ) = ( z 2 1 ) μ / 2 2 ν Γ ( μ ν ) Γ ( ν + 1 ) 0 ( sinh t ) 2 ν + 1 ( z + cosh t ) ν + μ + 1 d t , μ > ν > 1 ,
14.25.2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 ,
14: 13.23 Integrals
13.23.1 0 e z t t ν 1 M κ , μ ( t ) d t = Γ ( μ + ν + 1 2 ) ( z + 1 2 ) μ + ν + 1 2 F 1 2 ( 1 2 + μ κ , 1 2 + μ + ν 1 + 2 μ ; 1 z + 1 2 ) , μ + ν + 1 2 > 0 , z > 1 2 .
13.23.2 0 e z t t μ 1 2 M κ , μ ( t ) d t = Γ ( 2 μ + 1 ) ( z + 1 2 ) κ μ 1 2 ( z 1 2 ) κ μ 1 2 , μ > 1 2 , z > 1 2 ,
13.23.3 1 Γ ( 1 + 2 μ ) 0 e 1 2 t t ν 1 M κ , μ ( t ) d t = Γ ( μ + ν + 1 2 ) Γ ( κ ν ) Γ ( 1 2 + μ + κ ) Γ ( 1 2 + μ ν ) , 1 2 μ < ν < κ .
13.23.5 0 e 1 2 t t ν 1 W κ , μ ( t ) d t = Γ ( 1 2 + μ + ν ) Γ ( 1 2 μ + ν ) Γ ( κ ν ) Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) , | μ | 1 2 < ν < κ .
Then for μ in the half-plane μ μ 1 > max ( ρ 0 , κ 1 2 )
15: 25.2 Definition and Expansions
When s > 1 , …
25.2.2 ζ ( s ) = 1 1 2 s n = 0 1 ( 2 n + 1 ) s , s > 1 .
25.2.6 ζ ( s ) = n = 2 ( ln n ) n s , s > 1 .
25.2.11 ζ ( s ) = p ( 1 p s ) 1 , s > 1 ,
product over zeros ρ of ζ with ρ > 0 (see §25.10(i)); γ is Euler’s constant (§5.2(ii)).
16: 4.6 Power Series
4.6.2 ln z = ( z 1 z ) + 1 2 ( z 1 z ) 2 + 1 3 ( z 1 z ) 3 + , z 1 2 ,
4.6.4 ln z = 2 ( ( z 1 z + 1 ) + 1 3 ( z 1 z + 1 ) 3 + 1 5 ( z 1 z + 1 ) 5 + ) , z 0 , z 0 ,
4.6.6 ln ( z + a ) = ln a + 2 ( ( z 2 a + z ) + 1 3 ( z 2 a + z ) 3 + 1 5 ( z 2 a + z ) 5 + ) , a > 0 , z a , z a .
17: 6.14 Integrals
6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
18: 5.14 Multidimensional Integrals
Then for z k > 0 , k = 1 , 2 , , n + 1 , … provided that a , b > 0 , c > min ( 1 / n , a / ( n 1 ) , b / ( n 1 ) ) . … when a > 0 , c > min ( 1 / n , a / ( n 1 ) ) . …
5.14.6 1 ( 2 π ) n / 2 ( , ) n | Δ ( t 1 , , t n ) | 2 c k = 1 n exp ( 1 2 t k 2 ) d t k = k = 1 n Γ ( 1 + k c ) ( Γ ( 1 + c ) ) n , c > 1 / n .
5.14.7 1 ( 2 π ) n [ π , π ] n 1 j < k n | e i θ j e i θ k | 2 b d θ 1 d θ n = Γ ( 1 + b n ) ( Γ ( 1 + b ) ) n , b > 1 / n .
19: 13.16 Integral Representations
13.16.2 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z λ Γ ( 1 + 2 μ 2 λ ) Γ ( 2 λ ) 0 1 M κ λ , μ λ ( z t ) e 1 2 z ( t 1 ) t μ λ 1 2 ( 1 t ) 2 λ 1 d t , μ + 1 2 > λ > 0 ,
13.16.4 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ κ ) 0 e t t κ 1 2 I 2 μ ( 2 z t ) d t , ( κ μ ) 1 2 < 0 .
13.16.5 W κ , μ ( z ) = z μ + 1 2 2 2 μ Γ ( 1 2 + μ κ ) 1 e 1 2 z t ( t 1 ) μ 1 2 κ ( t + 1 ) μ 1 2 + κ d t , μ + 1 2 > κ , | ph z | < 1 2 π ,
13.16.6 W κ , μ ( z ) = e 1 2 z z κ + 1 Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) 0 W κ , μ ( t ) e 1 2 t t κ 1 t + z d t , | ph z | < π , ( 1 2 + μ κ ) > max ( 2 μ , 0 ) ,
where c is arbitrary, c > 0 . …
20: 10.22 Integrals
When μ > 1 When μ > 0 , … When ν > μ > 1 , … When μ > 0 , … If ν > 1 2 , then …